徐州市铜山中学高三上学期期中考试数学试题_第1页
徐州市铜山中学高三上学期期中考试数学试题_第2页
徐州市铜山中学高三上学期期中考试数学试题_第3页
徐州市铜山中学高三上学期期中考试数学试题_第4页
徐州市铜山中学高三上学期期中考试数学试题_第5页
已阅读5页,还剩28页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学必求其心得,业必贵于专精学必求其心得,业必贵于专精学必求其心得,业必贵于专精2017—2018学年度高三年级第一学期期中抽测数学一、填空题:本大题共14个小题,每小题5分,共70分.将答案填在答题纸上.1.设集合,,则.2.已知复数满足,其中为虚数单位,则复数的实部为.3。函数的最小正周期为.4。已知一组数据:87,,90,89,93的平均数为90,则该组数据的方差为.5.双曲线的离心率为.6。从2个黄球,3个红球中随机取出两个球,则两球颜色不同的概率是.7。执行如图所示的算法流程图,则输出的值为.8.各棱长都为2的正四棱锥的体积为.9.已知公差不为零的等差数列的前项和为,且,若成等比数列,则的值为.10。如图,在半径为2的扇形中,,为弧上的一点,若,则的值为.11.已知函数(为自然对数的底数),若,则实数的取值范围是.12。已知实数满足,则的最小值为.13。已知是圆上的动点,点,若直线上总存在点,使点恰是线段的中点,则实数的取值范围是.14。已知函数,若存在,使,则实数的取值范围是.二、解答题(本大题共6小题,共90分。解答应写出文字说明、证明过程或演算步骤.)15.已知的内角所对应的边分别为,且.(1)求角的大小;(2)若,,求的面积.16。如图,在三棱锥中,,,为的中点,为上一点,且平面,求证:(1)直线平面;(2)平面平面.17。如图,有一块半圆形空地,开发商计划建一个矩形游泳池及其附属设施,并将剩余空地进行绿化,园林局要求绿化面积应最大化,其中半圆的圆心为,半径为,矩形的一边在直线上,点在圆周上,在边上,且,设.(1)记游泳池及其附属设施的占地面积为,求的表达式;(2)求符合园林局要求的的余弦值.18.如图,在平面直角坐标系中,椭圆的左顶点为,离心率为,过点的直线与椭圆交于另一点,点为轴上的一点。(1)求椭圆的标准方程;(2)若是以点为直角顶点的等腰直角三角形,求直线的方程。19。已知数列的前项和为,满足,,数列满足,,且。(1)求数列和的通项公式;(2)若,数列的前项和为,对任意的,都有,求实数的取值范围。(3)是否存在正正数,使成等差数列?若存在,求出所有满足条件的;若不存在,请说明理由。20。已知函数(,是自然对数的底数).(1)若函数在区间上是单调减函数,求实数的取值范围;(2)求函数的极值;(3)设函数图像上任意一点处的切线为,求在轴上的截距的取值范围.21.【选做题】本题包括A,B,C,D四小题,请选定其中两小题,并在相应的答题区域内作答,若多做,则按作答的前两小题评分,解答时应写出文字说明,证明过程或演算步骤.A.【选修4-1:几何证明选讲】如图,是圆的切线,切点为,是过圆心的割线且交圆于点,过作圆的切线交于点,。求证:.B.【选修4—2:矩阵与变换】已知矩阵,若直线在矩阵对应的变换作用下得到的直线过点,求实数的值。C.【选修4—4:坐标系与参数方程】在极坐标系中,圆的方程为,以极点为坐标原点,极轴为轴正半轴建立平面直角坐标系,设直线的参数方程为(为参数),若直线与圆恒有公共点,求实数的取值范围.D.【选修4-5:不等式选讲】设均为正数,且,求证:。【必做题】第22题、第23题,每题10分,共计20分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤。22.如图,在三棱锥中,两两互相垂直,点分别为棱的中点,在棱上,且满足,已知,.(1)求异面直线与所成角的余弦值;(2)求二面角的正弦值.23。某同学在上学路上要经过三个带有红绿灯的路口,已知他在三个路口遇到红灯的概率依次是,遇到红灯时停留的时间依次是40秒、20秒、80秒,且在各个路口是否遇到红灯是相互独立的.(1)求这名同学在上学路上在第三个路口时首次遇到红灯的概率;(2)记这名同学在上学路上因遇到红灯停留的总时间为随机事件,求的概率分布与期望.试卷答案一、填空题1.2.3.64.5.6.7.48.9.8810.11.12.13.14.二、解答题15.(1)因为,由正弦定理,得.因为,所以.即,所以.因为,所以又因为,所以.(2)由余弦定理及得,,即.又因为,所以,所以.16。(1)因为平面,平面,平面平面,所以.因为平面,平面,所以平面.(2)因为为的中点,,所以为的中点.又因为,所以,又,,所以.又平面,,所以平面.因为平面,所以平面平面.17.(1)由题意,,,且为等边三角形,所以,,,.(2)要符合园林局的要求,只要最小,由(1)知,,令,即,解得或(舍去),令,,当时,是单调减函数;当时,是单调增函数,所以当时,取得最小值.答:符合园林局要求的的余弦值为。18.(1)由题意可得:即从而有,所以椭圆的标准方程为:.(2)设直线的方程为,代入,得,因为为该方程的一个根,解得,设,由,得:,即:由,即,得,即,即,所以或,当时,直线的方程为,当时,代入得,解得,此时直线的方程为.综上,直线的方程为,.19.(1)当时,,所以.当时,,,两式相减得,又,所以,从而数列为首项,公比的等比数列,从而数列的通项公式为.由两边同除以,得,从而数列为首项,公差的等差数列,所以,从而数列的通项公式为.(2)由(1)得,于是,所以,两式相减得,所以,由(1)得,因为对,都有,即恒成立,所以恒成立,记,所以,因为,从而数列为递增数列,所以当时,取最小值,于是.(3)假设存在正整数,使()成等差数列,则,即,若为偶数,则为奇数,而为偶数,上式不成立.若为奇数,设,则,于是,即,当时,,此时与矛盾;当时,上式左边为奇数,右边为偶数,显然不成立.综上所述,满足条件的不存在.20.(1)函数的导函数,则在区间上恒成立,且等号不恒成立,又,所以在区间上恒成立,记,只需,即解得.经检验,时,是上的单调减函数,又,所以实数的取值范围是.(2)由,得,①当时,有;,所以函数在上单调递增,在上单调递减,所以函数在取得极大值,没有极小值.②当时,有;,所以函数在上单调递减,在上单调递增,所以函数在取得极小值,没有极大值.综上可知:当时,函数在取得极大值,没有极小值;当时,函数在取得极小值,没有极大值.(3)设切点为,则曲线在点处的切线方程为,当时,切线的方程为,其在轴上的截距不存在.当时,令,得切线在轴上的截距为,令,,考虑函数,则,列表如下:↗极大值↘↘极小值↗所以.故切线在轴上的截距的取值范围是.数学Ⅱ(附加题)参考答案21A.∵是圆的切线,∴,连结,则,∵是圆的切线,∴,又,∴,∴,则,而,∴,∴,由得,代入得,故.21B.矩阵,得,所以,将点代入直线得。21C.由(为参数),可得直线的普通方程为,由得,所以,圆的标准方程为,因为直线与圆恒有公共点,所以,又因为,所以,解之得,所以,实数的取值范围为.21D.证明:因为,所以,因为,当且仅当时等号成立,所以.22.(1)如图,以为原点,分别以方向为轴、轴、轴正方向建立空间直角坐标系。依题意可得:,,,,,,所以,,所以.因此异面直线与所成角的余弦值为。(2)平面的一个法向量为.设为平面的一个法向量,又,则即不妨取,则,所以为平面的一个法向量,从而,设二面角的大小为,则.因为,所以.因此二面角的正弦值为。23.(1)设这名同学在上学路上在第三个路口时首次遇到红灯为事件,因为事件等于事件“这名同学在第一和第二个路口没有遇到红灯,在第三个路口遇到红灯”,所以.答:这名同学在上学路上在第三个路口时首次遇到红灯的概率为。(2)的所有可能取值为0,40,20,80,60,100,120,140(单位:秒).的分布列是:;;;;;;;。所以.

徐州市2017—2018学年度高三年级摸底考试数学I参考答案一、填空题1.2.3.64.5.6.7.48.9.8810.11.12.13.14.二、解答题15.(1)因为,由正弦定理,得.················2分因为,所以.即,所以.····························································································4分因为,所以.················································································6分又因为,所以.···············································································7分(2)由余弦定理及得,,即.··································································································10分又因为,所以,····················································································12分所以.·································································14分16。(1)因为平面,平面,平面平面,所以.·························································3分因为平面,平面,所以平面.···························································································6分(2)因为为的中点,,所以为的中点.又因为,所以,············································································8分又,,所以.···························································10分又平面,,所以平面.···························································································12分因为平面,所以平面平面.············································14分17.(1)由题意,,,且为等边三角形,所以,,·····································································2分,.····················································6分(2)要符合园林局的要求,只要最小,由(1)知,,令,即,解得或(舍去),·························································10分令,,当时,是单调减函数;当时,是单调增函数,所以当时,取得最小值.答:符合园林局要求的的余弦值为。··························································14分18.(1)由题意可得:即从而有,所以椭圆的标准方程为:.····································································4分(2)设直线的方程为,代入,得,因为为该方程的一个根,解得,·······································6分设,由,得:,即:····························································10分由,即,得,即,即,所以或,··························································································14分当时,直线的方程为,当时,代入得,解得,此时直线的方程为。综上,直线的方程为,。··························································16分19.(1)当时,,所以.当时,,,两式相减得,又,所以,从而数列为首项,公比的等比数列,从而数列的通项公式为.由两边同除以,得,从而数列为首项,公差的等差数列,所以,从而数列的通项公式为.·····························································4分(2)由(1)得,于是,所以,两式相减得,所以,由(1)得,·················································································8分因为对,都有,即恒成立,所以恒成立,记,所以,············································································································10分因为,从而数列为递增数列,所以当时,取最小值,于是.······················································12分(3)假设存在正整数,使()成等差数列,则,即,若为偶数,则为奇数,而为偶数,上式不成立。若为奇数,设,则,于是,即,当时,,此时与矛盾;当时,上式左边为奇数,右边为偶数,显然不成立。综上所述,满足条件的不存在.····································································16分20.(1)函数的导函数,则在区间上恒成立,且等号不恒成立,(表述不对吧,可以去掉,后面再检验?)又,所以在区间上恒成立,·········································2分记,只需即解得.经检验,时,是上的单调减函数,又,所以实数的取值范围是.··············································4分我的机子这题答案后三行乱码,答案我算的是a小于三分之一,原答案忽略了0(2)由,得,①当时,有;,所以函数在上单调递增,在上单调递减,所以函数在取得极大值,没有极小值.②当时,有;,所以函数在上单调递减,在上单调递增,所以函数在取得极小值,没有极大值.综上可知:当时,函数在取得极大值,没有极小值;当时,函数在取得极小值,没有极大值.·········································································································································10分(3)设切点为,则曲线在点处的切线方程为,当时,切线的方程为,其在轴上的截距不存在.当时,令,得切线在轴上的截距为,············································································12分令,,考虑函数,则,列表如下:↗极大值↘↘极小值↗所以.故切线在轴上的截距的取值范围是.······························16分

徐州市2017—2018学年度高三年级摸底考试(第21(A)(第21(A)题)21A.∵是圆的切线,∴,连结,则,∵是圆的切线,∴,又,∴,∴,则,而,∴,∴,································5分由得,代入得,故.···················································································10分21B.矩阵,得,·························································5分所以,将点代入直线得。··································································10分21C.由(为参数),可得直线的普通方程为,由得,所以,圆的标准方程为,·························································5分因为直线与圆恒有公共点,所以,又因为,所以,解之得,所以,实数的取值范围为.·······

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论