




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市崇明区2025年数学高二下期末经典模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.过点的直线与函数的图象交于,两点,为坐标原点,则()A. B. C.10 D.202.已知A=B={1,2,3,4,5},从集合A到B的映射满足:①;②的象有且只有2个,求适合条件的映射的个数为()A.10 B.20 C.30 D.403.欧拉公式eix=cosx+isinx(i为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”.根据欧拉公式可知,e2i表示的复数在复平面中对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.从装有4粒大小、形状相同,颜色不同的玻璃球的瓶中,随意一次倒出若干粒玻璃球(至少一粒),则倒出奇数粒玻璃球的概率比倒出偶数粒玻璃球的概率()A.小 B.大 C.相等 D.大小不能确定5.如图是求样本数据方差的程序框图,则图中空白框应填入的内容为()A. B.C. D.6.设集合A={x|x2﹣2x﹣3≤0},B={x|2﹣x>0},则A∩B=()A.[﹣3,2) B.(2,3] C.[﹣1,2) D.(﹣1,2)7.当取三个不同值时,正态曲线的图象如图所示,则下列选项中正确的是()A. B.C. D.8.从一个装有3个白球,3个红球和3个蓝球的袋中随机抓取3个球,记事件为“抓取的球中存在两个球同色”,事件为“抓取的球中有红色但不全是红色”,则在事件发生的条件下,事件发生的概率()A. B. C. D.9.已知、为双曲线C:的左、右焦点,点P在C上,∠P=,则A.2 B.4 C.6 D.810.已知双曲线的焦点坐标为,,点是双曲线右支上的一点,,的面积为,则该双曲线的离心率为()A. B. C. D.11.设,则的虚部是()A. B. C. D.12.椭圆的左焦点为,若关于直线的对称点是椭圆上的点,则椭圆的离心率为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在某项测量中,测量结果服从正态分布,若在内取值的概率,则在内取值的概率为.14.一个口袋里装有5个不同的红球,7个不同的黑球,若取出一个红球记2分,取出一个黑球记1分,现从口袋中取出6个球,使总分低于8分的取法种数为__________种.15.有9本不相同的教科书排成一排放在书架上,其中数学书4本,外语书3本,物理书2本,如果同一学科的书要排在一起,那么有________种不同的排法(填写数值).16.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,三棱柱的底面是边长为2的正三角形且侧棱垂直于底面,侧棱长是是的中点.(1)求证:平面;(2)求二面角的大小;18.(12分)已知函数,且.(Ⅰ)若是偶函数,当时,,求时,的表达式;(Ⅱ)若函数在上是减函数,求实数的取值范围.19.(12分)已知等式.(1)求的展开式中项的系数,并化简:;(2)证明:(ⅰ);(ⅱ).20.(12分)已知,R,矩阵的两个特征向量,.(1)求矩阵的逆矩阵;(2)若,求.21.(12分)已知公差不为零的等差数列满足,且,,成等比数列.(1)求数列的通项公式;(2)若,且数列的前项和为,求证:.22.(10分)某商场销售某种商品的经验表明,该商品每日销量(单位:千克)与销售价格(单位:元千克)满足关系式,其中,为常数,已知销售价格为元/千克时,每日可售出该商品千克.(1)求的值:(2)若该商品的成本为元千克,试确定销售价格的值,使商场每日销售该商品所获得的利润最大.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
判断函数的图象关于点P对称,得出过点的直线与函数的图象交于A,B两点时,得出A,B两点关于点P对称,则有,再计算的值.【详解】,∴函数的图象关于点对称,∴过点的直线与函数的图象交于A,B两点,且A,B两点关于点对称,∴,则.故选D.本题主要考查了函数的对称性,以及平面向量的数量积运算问题,是中档题.2、D【解析】分析:将元素按从小到大的顺序排列,然后按照元素在中的象有且只有两个进行讨论.详解:将元素按从小到大的顺序排列,因恰有两个象,将元素分成两组,从小到大排列,有一组;一组;一组;一组,中选两个元素作象,共有种选法,中每组第一个对应集合中的较小者,适合条件的映射共有个,故选D.点睛:本题考查映射问题并不常见,解决此类问题要注意:()分清象与原象的概念;()明确对应关系.3、B【解析】
由题意得,得到复数在复平面内对应的点,即可作出解答.【详解】由题意得,e2i=cos2+isin2,∴复数在复平面内对应的点为(cos2,sin2).∵2∈,∴cos2∈(-1,0),sin2∈(0,1),∴e2i表示的复数在复平面中对应的点位于第二象限,故选B.本题主要考查了复数坐标的表示,属于基础题.4、B【解析】试题分析:四种不同的玻璃球,可设为,随意一次倒出一粒的情况有4种,倒出二粒的情况有6种,倒出3粒的情况有4种,倒出4粒的情况有1种,那么倒出奇数粒的有8种,倒出偶数粒的情况有7种,故倒出奇数粒玻璃球的概率比倒出偶数粒玻璃球的概率大.考点:古典概型.5、D【解析】
由题意知该程序的作用是求样本的方差,由方差公式可得.【详解】由题意知该程序的作用是求样本的方差,所用方法是求得每个数与的差的平方,再求这8个数的平均值,则图中空白框应填入的内容为:故选:D本题考查了程序框图功能的理解以及样本方差的计算公式,属于一般题.6、C【解析】
求得集合A={x|-1≤x≤3},B={x|x<2},根据集合的交集运算,即可求解.【详解】由题意,集合A={x|x所以A∩B={x|-1≤x<2}=[-1,2).故选:C.本题主要考查了集合的交集运算,其中解答中正确求解集合A,B,再根据集合的运算求解是解答的关键,着重考查了推理与运算能力,属于基础题.7、A【解析】分析:由题意结合正态分布图象的性质可知,越小,曲线越“瘦高”,据此即可确定的大小.详解:由正态曲线的性质知,当一定时,曲线的形状由确定,越小,曲线越“瘦高”,所以.本题选择A选项.点睛:本题主要考查正态分布图象的性质,系数对正态分布图象的影响等知识,意在考查学生的转化能力和计算求解能力.8、C【解析】
根据题意,求出和,由公式即可求出解答.【详解】解:因为事件为“抓取的球中存在两个球同色”包括两个同色和三个同色,所以事件发生且事件发生概率为:故.故选:C.本题考查条件概率求法,属于中档题.9、B【解析】本试题主要考查双曲线的定义,考查余弦定理的应用.由双曲线的定义得①,又,由余弦定理②,由①2-②得,故选B.10、B【解析】
由的面积为,可得,再由余弦定理求出,根据双曲线的定义可得,从而可得结论.【详解】因为的面积为,,所以,可得,,,所以离心率,故选B.本题主要考查双曲线的定义及离心率,属于中档题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,从而求出;②构造的齐次式,求出;③采用离心率的定义以及圆锥曲线的定义来求解.11、B【解析】
直接利用复数代数形式的乘除运算化简得,进而可得的虚部.【详解】∵,∴,∴的虚部是,故选B.本题考查复数代数形式的乘除运算,考查复数的基本概念,共轭复数的概念,属于基础题.12、A【解析】
利用点关于直线的对称点,且A在椭圆上,得,即得椭圆C的离心率;【详解】∵点关于直线的对称点A为,且A在椭圆上,即,∴,∴椭圆C的离心率.故选A.本题主要考查椭圆的离心率,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、0.8【解析】
由于正态分布N(1,σ2)(σ>0)的图象关于直线ξ=1对称,且ξ在(0,1)内取值的概率为0.4,因此ξ在(1,2)内取值的概率也为0.4,故ξ在(0,2)内取值的概率为0.8.14、【解析】根据题意,设取出个红球,则取出个黑球,此时总得分为,若总分低于8分,则有,即,即可取的情况有2种,即或,即总分低于8分的情况有2种:①、取出6个黑球,有种取法,②、取出1个红球,5个黑球,有种取法,故使总分低于8分的取法有7+105=112种;故答案为:112.15、1728【解析】
根据题意,将同学科的书捆绑,由排列的概念,即可得出结果.【详解】因为一共有数学书4本,外语书3本,物理书2本,同一学科的书要排在一起,则有种不同的排法.故答案为:本题主要考查排列的应用,利用捆绑法即可求解,属于常考题型.16、【解析】该同学通过测试的概率为,故答案为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】分析:⑴设与相交于点,连接,根据题意可得,利用线面平行的判定定理得到平面;⑵建立空间直角坐标系,求出法向量,然后运用公式计算二面角的大小详解:(1)设与相交于点P,连接PD,则P为中点,D为AC中点,PD//,又PD平面D,//平面D.(2)如图建立空间直角坐标系,则D(0,0,0),A(1,0,0),(1,0,),B(0,,0),(0,,)=(-1,,-),=(-1,0,-)设平面的法向量为n=(x,y,z)则nn则有,得n=(,0,1)由题意,知=(0,0,)是平面ABD的一个法向量。设n与所成角为,则,二面角的大小是.点睛:本题主要考查了线面平行的判定定理,要求二面角平面角的大小,可以采用建立空间直角坐标系的方法,给出点坐标,求出各面上的法向量,利用公式即可求出角的大小。18、(1)见解析;(2).【解析】分析:⑴根据偶函数性质,当时,,求出表达式⑵复合函数同增异减,并且满足定义域详解:(Ⅰ)∵是偶函数,所以,又当时,∴当时,,∴,所以当时,.(Ⅱ)因为在上是减函数,要使在有意义,且为减函数,则需满足解得,∴所求实数的取值范围为.点睛:本题主要考查了复合函数,关键是分解为两个基本函数,利用同增异减的结论研究其单调性,再求参数范围。19、(1);(2)(ⅰ)详见解析;(ⅱ)详见解析.【解析】
(1)的展开式中含的项的系数为,二项式定理展开,展开得到含项的系数,利用,即可证明;(2)(ⅰ)用组合数的阶乘公式证明;(ⅱ)利用(ⅰ)的结论和组合数的性质得到,最后结合(1)的结论证明.【详解】(1)的展开式中含的项的系数为由可知的展开式中含的项的系数为,,;(2)(ⅰ)当时,;(ⅱ)由(1)知,,.本题考查二项式定理和二项式系数和组合数的关系,以及组合数公式的证明,意在考查变形,转化,推理,证明的能力,属于难题,本题的(ⅱ)的关键步骤是这一步用到了(ⅰ)的结论和组合数的性质.20、(1)(2)【解析】
(1)由矩阵的特征向量求法,解方程可得,再由矩阵的逆矩阵可得所求;(2)求得,再由矩阵的多次变换,可得所求.【详解】解:(1)设矩阵的特征向量对应的特征值为,特征向量对应的特征值为,则,则.(2)因,所以.本题考查矩阵的特征值和特征向量,考查矩阵的逆矩阵,以及矩阵的变换,考查运算求解能力,属于中档题.21、(1).(2)见详解.【解析】
(1)设公差为,由已知条件列出方程组,解得,解得数列的通项公式.(2)得出,可由裂项相消法求出其前项和,进而可证结论.【详解】(1)设等差数列的公差为().由题意得则化简得解得所以.(2)证明:,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 民主理论与实践的关系试题及答案
- 西方政治制度与经济政策的关联试题及答案
- 公共政策对社会稳定的影响试题及答案
- 软件测试的有效沟通技巧试题及答案
- 西方政治制度下环境法规的执行与评估试题及答案
- 网络工程师考试高频试题及答案
- 建设性讨论西方政治考试的主题试题及答案
- 西方地区政治稳定的关键试题及答案
- 如何优化公共政策的资源配置试题及答案
- 机电工程项目可行性研究的实施及试题与答案
- 人民调解员培训课件
- 激光切割软件lasercad说明书
- 慢阻肺的中医康复课件讲义
- 湖南金紫宇新材料科技有限公司年产2万吨光刻胶用新型感光精细化学品项目环评报告书
- 运动技能学习与控制课件第四章感觉系统对运动控制的作用
- QES三体系内审检查表 含审核记录
- 安装施工进度计划表-样表
- 砖砌体工程质量标准及检验方法
- 项目建设满意度调查表
- 电气火灾监控系统调试、检测、验收记录
- 代谢组学-课件
评论
0/150
提交评论