




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省澄城县2025年高二数学第二学期期末达标检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设向量,,若向量与同向,则()A.2 B.-2 C.±2 D.02.展开式中x2的系数为()A.15 B.60 C.120 D.2403.已知定义在上的函数在上单调递增且,若为奇函数,则不等式的解集为()A. B. C. D.4.设有个不同颜色的球,放入个不同的盒子中,要求每个盒子中至少有一个球,则不同的放法有()A.种 B.种C.种 D.种5.某次文艺汇演为,要将A,B,C,D,E,F这六个不同节目编排成节目单,如下表:如果A,B两个节目要相邻,且都不排在第3号位置,那么节目单上不同的排序方式有A.192种 B.144种 C.96种 D.72种6.设,且,则下列不等式恒成立的是()A. B.C. D.7.为了调查胃病是否与生活规律有关,某同学在当地随机调查了500名30岁以上的人,并根据调查结果计算出了随机变量的观测值,则认为30岁以上的人患胃病与生活无规律有关时,出错的概率不会超过()附表:A.0.001 B.0.005 C.0.010 D.0.0258.下列5个命题中:①平行于同一直线的两条不同的直线平行;②平行于同一平面的两条不同的直线平行;③若直线与平面没有公共点,则;④用一个平面截一组平行平面,所得的交线相互平行;⑤若,则过的任意平面与的交线都平行于.其中真命题的个数是()A.2 B.3 C.4 D.59.抛物线的焦点坐标是()A. B. C. D.10.复数在平面内对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.某地气象台预计,7月1日该地区下雨的概率为,刮风的概率为,既刮风又下雨的概率为,设表示下雨,表示刮风,则A. B. C. D.12.复数(i为虚数单位)的共轭复数是A.1+i B.1−i C.−1+i D.−1−i二、填空题:本题共4小题,每小题5分,共20分。13.设,若是关于的方程的一个虚根,则的取值范围是____.14.已知满足约束条件则的最大值为______.15.某中学开设A类选修课4门,B类选修课5门,C类选修课2门,每位同学从中共选4门课,若每类课程至少选一门,则不同的选法共有_______种.16.设随机变量,且,则事件“”的概率为_____(用数字作答)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某部门为了解人们对“延迟退休年龄政策”的支持度,随机调查了人,其中男性人.调查发现持不支持态度的有人,其中男性占.分析这个持不支持态度的样本的年龄和性别结构,绘制等高条形图如图所示.(1)在持不支持态度的人中,周岁及以上的男女比例是多少?(2)调查数据显示,个持支持态度的人中有人年龄在周岁以下.填写下面的列联表,问能否有的把握认为年龄是否在周岁以下与对“延迟退休年龄政策”的态度有关.参考公式及数据:,.18.(12分)已知函数(I)求在(为自然对数的底数)处的切线方程.(II)求的最小值.19.(12分)已知数列满足,,.(Ⅰ)证明:数列是等比数列,并求数列的通项公式;(Ⅱ)设,求数列的前项和.20.(12分)的内角所对的边分别是,已知.(1)求;(2)若的面积为,,,求,.21.(12分)一个袋子装有大小形状完全相同的9个球,其中5个红球编号分别为1,2,3,4,5;4个白球编号分别为1,2,3,4,从袋中任意取出3个球.(I)求取出的3个球编号都不相同的概率;(II)记为取出的3个球中编号的最小值,求的分布列与数学期望.22.(10分)已知函数.(1)当,求函数的单调区间;(2)若函数在上是减函数,求的最小值;(3)证明:当时,.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
由与平行,利用向量平行的公式求得x,验证与同向即可得解【详解】由与平行得,所以,又因为同向平行,所以.故选A本题考查向量共线(平行)的概念,考查计算求解的能力,属基础题.2、B【解析】
∵展开式的通项为,令6-r=2得r=4,∴展开式中x2项为,所以其系数为60,故选B3、D【解析】
因为是奇函数,所以关于对称,根据条件结合数形结合可判断的解集.【详解】是奇函数,关于对称,在单调递增,在也是单调递增,,时,时,又关于对称,时,时的解集是.故选D.本题考查了利用函数的性质和图像,解抽象不等式,这类问题的关键是数形结合,将函数的性质和图像结合一起,这样会比较简单.4、D【解析】
要求每个盒子中至少有一个球,可将两个颜色的球捆绑在一起.再全排列.【详解】将两个颜色的球捆绑在一起,再全排列得选D将两个颜色的球捆绑在一起.再全排列.本题为选择题还可取特值:令n=1,只有一种放法,排除AB,令n=2有6中放法,选D5、B【解析】
由题意知两个截面要相邻,可以把这两个与少奶奶看成一个,且不能排在第3号的位置,可把两个节目排在号的位置上,也可以排在号的位置或号的位置上,其余的两个位置用剩下的四个元素全排列.【详解】由题意知两个节目要相邻,且都不排在第3号的位置,可以把这两个元素看成一个,再让它们两个元素之间还有一个排列,两个节目可以排在两个位置,可以排在两个位置,也可以排在两个位置,所以这两个元素共有种排法,其他四个元素要在剩下的四个位置全排列,所以所有节目共有种不同的排法,故选B.本题考查了排列组合的综合应用问题,其中解答时要先排有限制条件的元素,把限制条件比较多的元素排列后,再排没有限制条件的元素,最后再用分步计数原理求解是解答的关键,着重考查了分析问题和解答问题的能力.6、D【解析】
逐一分析选项,得到正确答案.【详解】由已知可知,可以是正数,负数或0,A.不确定,所以不正确;B.当时,两边同时乘以,应该,所以不正确;C.因为有可能等于0,所以,所以不正确;D.当时,两边同时乘以,,所以正确.故选D.本题考查了不等式的基本性质,属于简单题型.7、D【解析】
把相关指数的观测值与临界值比较,可得判断30岁以上的人患胃病与生活无规律有关的可靠性程度及犯错误的概率.【详解】∵相关指数的观测值,∴在犯错误的概率不超过的情况下,判断岁以上的人患胃病与生活无规律有关.故选:D.本题考查了独立性检验思想方法,熟练掌握在独立性检验中,观测值与临界值大小比较的含义是解题的关键.8、C【解析】
根据平行公理判定①的真假;根据线线位置关系,判定②的真假;根据线面平行的概念,判定③的真假;根据面面平行的性质,判断④的真假;根据线面平行的性质,判断⑤的真假.【详解】对于①,根据平行公理,平行于同一直线的两条不同的直线平行,①正确;对于②,平行于同一平面的两条不同的直线,可能平行、异面或相交;②错误;对于③,根据线面平行的概念,若直线与平面没有公共点,所以,③正确;对于④,根据面面平行的性质,用一个平面截一组平行平面,所得的交线相互平行,④正确;对于⑤,根据线面平行的性质,若,则过的任意平面与的交线都平行于,⑤正确.故选:C本题主要考查线面关系、面面关系相关命题的判定,熟记平面的性质,平行公理,线面位置关系,面面位置关系即可,属于常考题型.9、A【解析】分析:先把抛物线的方程化成标准方程,再求其焦点坐标.详解:由题得,所以抛物线的焦点坐标为.故答案为A.点睛:(1)本题主要考查抛物线的简单几何性质,意在考查学生对这些知识的掌握水平.(2)研究圆锥曲线时,首先一般把曲线的方程化成标准方程再研究.10、B【解析】分析:先化简复数z,再判断其在平面内对应的点在第几象限.详解:由题得,所以复数z在平面内对应的点为,所以在平面内对应的点在第二象限.故答案为B.点睛:(1)本题主要考查复数的计算和复数的几何意义,意在考查学生对这些知识的掌握水平.(2)复数对应的点是(a,b),点(a,b)所在的象限就是复数对应的点所在的象限.复数和点(a,b)是一一对应的关系.11、B【解析】解:因为5月1日浔阳区下雨的概率为,刮风的概率为,既刮风又下雨的概率为,设A为下雨,B为刮风,则12、B【解析】分析:化简已知复数z,由共轭复数的定义可得.详解:化简可得z=∴z的共轭复数为1﹣i.故选B.点睛:本题考查复数的代数形式的运算,涉及共轭复数,属基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
设z=a+bi,(a,b∈R),则也是此方程的一个虚根,由方程有虚根可知,判别式为负数,据此可求出m的范围,再利用根与系数的关系可得,从而求出结果.【详解】设z=a+bi,(a,b∈R),则也是此方程的一个虚根,
z是关于x的方程x2+mx+m2−1=0的一个虚根,可得,即,则由根与系数的关系,,则,所以的取值范围是:.故答案为.本题考查实系数多项式虚根成对定理,以及复数的模的求解,属中档题.14、1【解析】
做出满足条件的可行域,根据图形即可求解.【详解】约束条件表示的可行域如图中阴影部分所示.由得,则目标函数过点时,取得最大值,.故答案为:1本题考查二元一次不等式组表示平面区域,利用数形结合求线性目标函数的最值,属于基础题.15、160【解析】
每位同学共选4门课,每类课程至少选一门,则必有某类课程选2门,另外两类课程各选1门,对选2门的这类课程进行分类,可能是A类,可能是B类,可能是C类.【详解】(1)当选2门的为A类,N1(2)当选2门的为B类,N2(3)当选2门的为C类,N3∴选法共有N1分类与分步计数原理,要确定好分类与分步的标准,本题对选2门课程的课程类进行分类,再对每一类情况分3步考虑.16、【解析】
根据二项分布求得,再利用二项分布概率公式求得结果.【详解】由可知:本题正确结果:本题考查二项分布中方差公式、概率公式的应用,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)见解析【解析】
(1)先求出周岁及以上的男性和女性的人数,再将男性和女性人数相比可得出答案;(2)先列出列联表,并计算出的观测值,根据临界值表找出犯错误的概率,即可对题中结论判断正误.【详解】(1)由已知可得持不支持态度的人中有男性人,由等高条形图可知这个男性中年龄在周岁及以上的有人;持不支持态度的人中有女性人,由等高条形图可知这个女性中年龄在周岁及以上的有人;故所求在持不支持态度的人中,周岁及以上的男女比例是.(2)由已知可得以下列联表:周岁以下周岁及以上总计不支持支持总计计算得的观测值,所以有的把握认为年龄是否在45周岁以下与对“延迟退休年龄政策”的态度有关.本题考查独立性检验,意在考查学生对独立性检验概率的理解和掌握情况,属于基础题.18、(I);(II)【解析】
(I)对函数求导,把分别代入导数与原函数中求出,,由点斜式即可得到切线方程;(II)求出函数的定义域,分别令导数大于零和小于零,结合定义域,解出的范围即可得到函数的单调区间,由此求出的最小值。【详解】(I),故,又故在处的切线方程为:,即.(II)由题可得的定义域为,令,故在上单减,在上单增,本题主要考查利用导数求函数上某点切线方程,以及函数单调区间和最值,在求单调区间注意结合定义域研究,属于基础题。19、(1).(2).【解析】试题分析:(1)由得出,由等比数列的定义得出数列为等比数列,并且求出的通项公式;(2)求出数列的通项公式,利用错位相减法求出数列的前n项和.试题解析:(1)由,得,即,且,所以数列是以为首项,为公比的等比数列.所以,故数列的通项公式为.(2)由(1)知,,所以.所以.①.②①-②,得,所以.故数列的前项和.20、(1)(2)【解析】试题分析:(1)由正弦定理得;(2)由,再由余弦订立的得.试题解析:(1)由已知结合正弦定理得所以即,亦即因为,所以.(2)由,,得,即,又,得所以,又,∴21、(I)(II)【解析】试题分析:(Ⅰ)设A表示“取出的3个球的编号为连续的自然数”,取出3球的方法有84种,连续自然数的方法:123和234均为种,341为种,由此能求出结果.(Ⅱ)X的取值为2,3,4,1.分别求出相应的概率,由此能求出X的分布列与数学期望试题解析:(I)设“取出的3个球编号都不相同”为事件A,“取出的3个球中恰有两个球编号相同”为事件B,则,(II)的取值为1,2,3,4所以的分布列为:1234的数学期望考点:离散型随机变量的期望与方差;古典概型及其概率计算公式22、(1)函数的单调递减区间是,单调递增区间是.(2)的最小值为.(3)证明见解析.【解析】分析:函数的定义域为,(1)函数,据此可知函数的单调递减区间是,单调递增区间是(2)由题意可知在上恒成立.据此讨论可得的最小值为.(3)问题等价于.构造函数,则取最小值.设,则.由于,据此可知题中的结论成立.详解:函数的定义域为,(1)函数,当且时,;当时,,所以函数的单调递减区间是,单调递增区间是(2)因在上为减函数,故在上恒成立.所以当时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 个人果园合同协议书范本
- 兰州铝铸汽车零部件项目申请报告
- 生死合同协议书怎么写
- 做高校食堂策划方案
- 青少年心理健康主题活动策划方案
- B超在犬猫妊娠诊断中应用-文档
- 分股协议书范本合同
- 基于Linkboy的创客校本课程的设计与实践
- 融媒体时代新闻生产的流程再造
- 校园雨伞共享创业计划书
- 家具供货结算协议书
- 2025届湖南省邵阳市高三下学期第三次联考物理试卷(含答案)
- 叉车作业安全协议书
- 房屋解除转让协议书
- 小学生美术讲课课件
- 新闻采访考试试题及答案
- 2025年北京市西城区高三语文二模考试卷附答案解析
- 2024-2025学年沪教版(五四学制)七年级英语下学期考点突破:书面表达15篇(含答案)
- JJF 2215-2025移动源排放颗粒物数量检测仪校准规范
- 选择性必修1 《当代国际政治与经济》(主观题答题模版)
- 河北单招试题及答案英语
评论
0/150
提交评论