陕西省汉中市汉台区2024-2025学年高二下数学期末预测试题含解析_第1页
陕西省汉中市汉台区2024-2025学年高二下数学期末预测试题含解析_第2页
陕西省汉中市汉台区2024-2025学年高二下数学期末预测试题含解析_第3页
陕西省汉中市汉台区2024-2025学年高二下数学期末预测试题含解析_第4页
陕西省汉中市汉台区2024-2025学年高二下数学期末预测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

陕西省汉中市汉台区2024-2025学年高二下数学期末预测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若函数的图象与的图象都关于直线对称,则与的值分别为()A. B. C. D.2.某射手每次射击击中目标的概率是,且各次射击的结果互不影响.设随机变量为该射手在次射击中击中目标的次数,若,,则和的值分别为()A.5, B.5, C.6, D.6,3.在平面直角坐标系中,,,,,若,,则的最小值是()A.B.C.D.4.已知定义在上的函数的导函数为,且对任意都有,,则不等式的解集为()A. B. C. D.5.河南洛阳的龙门石窟是中国石刻艺术宝库之一,现为世界文化遗产,龙门石窟与莫高窟、云冈石窟、麦积山石窟并称中国四大石窟.现有一石窟的某处“浮雕像”共7层,每上层的数量是下层的2倍,总共有1016个“浮雕像”,这些“浮雕像”构成一幅优美的图案,若从最下层往上“浮雕像”的数量构成一个数列,则的值为()A.8 B.10 C.12 D.166.若随机变量的数学期望,则的值是()A. B. C. D.7.设是虚数单位,则的值为()A. B. C. D.8.若函数的图象上存在关于直线对称的点,则实数的取值范围是()A. B. C. D.9.()A.2 B.1 C.0 D.10.某创业公司共有36名职工,为了了解该公司职工的年龄构成情况,随机采访了9位代表,将数据制成茎叶图如图,若用样本估计总体,年龄在内的人数占公司总人数的百分比是(精确到)()A. B. C. D.11.设且,则“”是“”的()A.必要不充分条件B.充要条件C.既不充分也不必要条件D.充分不必要条件12.下列有关命题的说法正确的是A.“”是“”的充分不必要条件B.“x=2时,x2-3x+2=0”的否命题为真命题C.直线:,:,的充要条件是D.命题“若,则”的逆否命题为真命题二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,实数满足,则的值为__________.14.已知抛物线的焦点为,点在上,以为圆心的圆与轴相切,且交于点,若,则圆截线段的垂直平分线所得弦长为,则______.15.“直线与双曲线有且只有一个公共点”是“直线与双曲线相切”的__________条件.16.对于函数,若存在区间,当时,的值域为,则称为倍值函数.下列函数为2倍值函数的是__________(填上所有正确的序号).①②③④三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知二项式的展开式中第五项为常数项.(1)求展开式中二项式系数最大的项;(2)求展开式中有理项的系数和.18.(12分)十九大提出,加快水污染防治,建设美丽中国根据环保部门对某河流的每年污水排放量单位:吨的历史统计数据,得到如下频率分布表:

污水量

频率

将污水排放量落入各组的频率作为概率,并假设每年该河流的污水排放量相互独立.(Ⅰ)求在未来3年里,至多1年污水排放量的概率;(Ⅱ)该河流的污水排放对沿河的经济影响如下:当时,没有影响;当时,经济损失为10万元;当时,经济损失为60万元为减少损失,现有三种应对方案:方案一:防治350吨的污水排放,每年需要防治费万元;方案二:防治310吨的污水排放,每年需要防治费2万元;方案三:不采取措施.试比较上述三种方案,哪种方案好,并请说明理由.19.(12分)设1,其中pR,n,(r=0,1,2,…,n)与x无关.(1)若=10,求p的值;(2)试用关于n的代数式表示:;(3)设,,试比较与的大小.20.(12分)设函数f(x)是增函数,对于任意x,y∈R都有f(x+y)=f(x)+f(y).(1)求f(0);(2)证明f(x)是奇函数;(3)解不等式12f(x2)—f(x)>121.(12分)北京市政府为做好会议接待服务工作,对可能遭受污染的某海产品在进入餐饮区前必须进行两轮检测,只有两轮都合格才能进行销售,否则不能销售.已知该海产品第一轮检测不合格的概率为,第二轮检测不合格的概率为,两轮检测是否合格相互没有影响.(1)求该海产品不能销售的概率.(2)如果该海产品可以销售,则每件产品可获利40元;如果该海产品不能销售,则每件产品亏损80元(即获利-80元).已知一箱中有该海产品4件,记一箱该海产品获利元,求的分布列,并求出数学期望.22.(10分)如图,在中,角,,的对边分别为,,,且.(1)求的大小;(2)若,为外一点,,,求四边形面积的最大值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】分析:由题意得,结合即可求出,同理可得的值.详解:函数的图象与的图象都关于直线对称,和()解得和,和时,;时,.故选:D.点睛:本题主要考查了三角函数的性质应用,属基础题.2、B【解析】

通过二项分布公式及可得答案.【详解】根据题意,,因此,,解得,故选B.本题主要考查二项分布的相关公式,难度不大.3、A【解析】试题分析:设P(x,y),则,,所以,所以P点轨迹为,根据条件,可以整理得到:,所以M,Q,N三点共线,即Q点在直线MN上,由M(8,0),N(0,8)可知Q点在直线上运动,所以的最小值问题转化为圆上点到直线的最小距离,即圆心到直线的距离减去圆的半径,。考点:1.平面向量的应用;2.直线与圆的位置关系。4、B【解析】

先构造函数,求导得到在R上单调递增,根据函数的单调性可求得不等式的解集.【详解】构造函数,,.又任意都有.在R上恒成立.在R上单调递增.当时,有,即的解集为.本题主要考查利用函数的单调性解不等式,根据题目条件构造一个新函数是解决本题的关键.5、C【解析】

数列,是等比数列,公比为2,前7项和为1016,由此可求得首项,得通项公式,从而得结论.【详解】最下层的“浮雕像”的数量为,依题有:公比,解得,则,,从而,故选C.本题考查等比数列的应用.数列应用题求解时,关键是根据题设抽象出数列的条件,然后利用数列的知识求解.6、C【解析】分析:由题意结合二项分布数学期望的计算公式求解实数p的值即可.详解:随机变量则的数学期望,据此可知:,解得:.本题选择C选项.点睛:本题主要考查二项分布的数学期望公式及其应用,意在考查学生的转化能力和计算求解能力.7、B【解析】

利用错位相减法、等比数列的求和公式及复数的周期性进行计算可得答案.【详解】解:设,可得:,则,,可得:,可得:,故选:B.本题主要考查等比数列的求和公式,错位相减法、及复数的乘除法运算,属于中档题.8、D【解析】分析:设若函数的图象上存在关于直线对称的点,则函数与函数的图象有交点,即有解,利用导数法,可得实数a的取值范围.详解:由的反函数为,函数与的图象上存在关于直线对称的点,则函数与函数的图象有交点,即有解,即,令,则,当时,,在上单调递增,当时,可得求得的最小值为1.实数的取值范围是,故选:D.点睛:本题考查的知识点是函数图象的交点与方程根的关系,利用导数求函数的最值,难度中档.9、C【解析】

用微积分基本定理计算.【详解】.故选:C.本题考查微积分基本定理求定积分.解题时可求出原函数,再计算.10、A【解析】

求出样本平均值与方差,可得年龄在内的人数有5人,利用古典概型概率公式可得结果.【详解】,,年龄在内,即内的人数有5人,所以年龄在内的人数占公司总人数的百分比是等于,故选A.样本数据的算术平均数公式.样本方差公式,标准差.11、C【解析】或;而时,有可能为.所以两者没有包含关系,故选.12、D【解析】A选项不正确,由于可得,故“”是“”的必要不充分条件;B选项不正确,“时,”的逆命题为“当时,”,是假命题,故其否命题也为假;C选项不正确,若两直线平行,则,解得;D选项正确,角相等时函数值一定相等,原命题为真命题,故其逆否命题为真,故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

根据图像分析,设,代入函数求值即可.【详解】由图像可知,设,,即.故填:1.本题考查了的图像,以及对数运算法则,属于基础题型,本题的关键是根据图像,判断和的正负,去绝对值.14、【解析】

根据条件以A为圆心的圆与y轴相切,且交AF于点B,,求出半径,然后根据垂径定理建立方程求解【详解】设,以为圆心的圆与轴相切,则半径,由抛物线的定义可知,,又,∴,解得,则,圆A截线段AF的垂直平分线所得弦长为,即,解得.故答案为1.本题主要考查了抛物线的定义、直线与抛物线的位置关系的应用,其中解答中熟练应用抛物线的定义,合理利用圆的弦长是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.15、必要非充分【解析】

结合直线和双曲线的位置关系,先判断充分条件,再判断必要条件得解.【详解】当直线与双曲线有且只有一个公共点时,直线有可能与双曲线相切,也有可能相交(直线与双曲线的渐近线平行),所以“直线与双曲线有且只有一个公共点”是“直线与双曲线相切”的非充分条件;直线与双曲线相切时,直线与双曲线有且只有一个公共点,所以“直线与双曲线有且只有一个公共点”是“直线与双曲线相切”的必要条件.所以“直线与双曲线有且只有一个公共点”是“直线与双曲线相切”的必要非充分条件.故答案为:必要非充分本题主要考查充分条件和必要条件的判定,考查直线和双曲线的位置关系,意在考查学生对这些知识的理解掌握水平.16、①②④【解析】分析:为倍值函数等价于,的图象与有两个交点,且在上递增,由此逐一判断所给函数是否符合题意即可.详解:为倍值函数等价于,的图象与有两个交点,且在上递增:对于①,与,有两个交点,在上递增,值域为,①符合题意.对于②,与,有两个交点,在上递增,值域为,②符合题意.对于③,与,没有交点,不存在,,值域为,③不合题意.对于④,与两个交点,在上递增,值域为,④合题意,故答案为①②④.点睛:本题考查函数的单调性以及函数的图象与性质、新定义问题及数形结合思想,属于难题.新定义题型的特点是:通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的.遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)121【解析】

(1),为常数项,所以,可求出的值,进而求得二项式系数最大的项;(2)由题意为有理项,直接计算即可.【详解】(1),∵为常数项,∴,∴二项式系数最大的项为第3项和第4项.∴,.(2)由题意为有理项,有理项系数和为.本题考查了二项式的展开式,需熟记二项式展开式的通项,属于基础题.18、(Ⅰ);(Ⅱ)采取方案二最好,理由详见解析.【解析】

(Ⅰ)先求污水排放量的概率0.25,然后再求未来3年里,至多1年污水排放量的概率;(Ⅱ)分别求解三种方案的经济损失的平均费用,根据费用多少作出决策.【详解】解:Ⅰ由题得,设在未来3年里,河流的污水排放量的年数为Y,则设事件“在未来3年里,至多有一年污水排放量”为事件A,则.在未来3年里,至多1年污水排放量的概率为.Ⅱ

方案二好,理由如下:由题得,.用,,分别表示方案一、方案二、方案三的经济损失,则万元.的分布列为:

2

62

P

.的分布列为:

0

10

60

P

.三种方案中方案二的平均损失最小,采取方案二最好.本题主要考查随机变量的分布列和期望,数学期望是生活生产中进行决策的主要指标,侧重考查数学建模和数学运算的核心素养.19、(1).(2).(3).【解析】分析:(1)先根据二项式展开式通项公式得,解得p的值;(2)先由得,再得,等式两边对求导,得;最后令得结果,(3)先求,化简不等式为比较与的大小关系,先计算归纳得大小关系,利用数学归纳法给予证明.详解:(1)由题意知,所以.(2)当时,,两边同乘以得:,等式两边对求导,得:令得:,即(3),猜测:当时,,,,此时不等式成立;②假设时,不等式成立,即:,则时,所以当时,不等式也成立;根据①②可知,,均有.点睛:有关组合式的求值证明,常采用构造法逆用二项式定理.对二项展开式两边分别求导也是一个常用的方法,另外也可应用组合数性质进行转化:,.20、(1)0;(2)见解析;(3){x|x<0或x>5}【解析】

试题分析:(1)利用已知条件通过x=y=0,直接求f(0);(2)通过函数的奇偶性的定义,直接证明f(x)是奇函数;(3)利用已知条件转化不等式.通过函数的单调性直接求解不等12试题解析:(1)令x=y=0,得f(0)=f(0+0)=f(0)+f(0),∴f(0)=0定义域关于原点对称y=-x,得f(x)+f(-x)=f(0)=0,∴f(-x)=f(x)∴f(x)是奇函数12f(即f又由已知得:f(2x)=2f由函数f(x∴不等式的解集{x|x<0或x>5}.考点:抽象函数及其应用;函数单调性的性质;函数奇偶性的判断;其他不等式的解法.【方法点睛】解决抽象函数问题常用方法:1.换元法:换元法包括显性换元法和隐性换元法,它是解答抽象函数问题的基本方法;2.方程组法:运用方程组通过消参、消元的途径也可以解决有关抽象函数的问题;3.待定系数法:如果抽象函数的类型是确定的,则可用待定系数法来解答有关抽象函数的问题;4.赋值法:有些抽象函数的性质是用条件恒等式给出的,可通过赋特殊值法使问题得以解决;5.转化法:通过变量代换等数学手段将抽象

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论