




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省大同市灵丘县2025届数学高二第二学期期末教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.从名学生志愿者中选择名学生参加活动,若采用下面的方法选取:先用简单随机抽样从人中剔除人,剩下的人再按系统抽样的方法抽取人,则在人中,每人入选的概率()A.不全相等 B.均不相等C.都相等,且为 D.都相等,且为2.六安一中高三教学楼共五层,甲、乙、丙、丁四人走进该教学楼2~5层的某一层楼上课,则满足且仅有一人上5楼上课,且甲不在2楼上课的所有可能的情况有()种A.27 B.81 C.54 D.1083.设函数,,给定下列命题:①若方程有两个不同的实数根,则;②若方程恰好只有一个实数根,则;③若,总有恒成立,则;④若函数有两个极值点,则实数.则正确命题的个数为()A. B. C. D.4.盒子里共有个除了颜色外完全相同的球,其中有个红球个白球,从盒子中任取个球,则恰好取到个红球个白球的概率为().A. B. C. D.5.把座位编号为1,2,3,4,5,6的六张电影票全部分给甲、乙、丙、丁四个人,每人最多得两张,甲、乙各分得一张电影票,且甲所得电影票的编号总大于乙所得电影票的编号,则不同的分法共有()A.90种 B.120种 C.180种 D.240种6.设,则等于()A. B. C. D.7.设,则“”是“”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件8.箱子中有标号为1,2,3,4,5,6且大小、形状完全相同的6个球,从箱子中一次摸出两个球,记下号码并放回,如果两球号码之积是4的倍数,则获奖.若有4人参与摸奖,则恰好有3人获奖的概率为()A.16625 B.96625 C.6249.通过随机询问名性别不同的小学生是否爱吃零食,得到如下的列联表:男女总计爱好不爱好总计由算得参照附表,得到的正确结论()A.我们有以上的把握,认为“是否爱吃零食与性别有关”B.我们有以上的把握,认为“是否爱吃零食与性别无关”C.在犯错误的概率不超过的前提下,认为“是否爱吃零食与性别有关”D.在犯错误的概率不超过的前提下,认为“是否爱吃零食与性别无关”10.已知向量,满足,,则向量在向量方向上的投影为()A.0 B.1C.2 D.11.将函数的图象向左平移个单位长度后得到函数的图象,则的最小值为()A. B. C. D.12.已知集合,,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.3名男生和3名女生站成一排照相,若男生甲不站在两端,3名女生中,有且只有两个女生相邻,则不同排法的种数为___________.14.已知,则____________.15.人并排站成一行,其中甲、乙两人必须相邻,那么不同的排法有__________种.(用数学作答)16.执行如图所示的程序框图,则输出的i的值为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)为了调查患胃病是否与生活规律有关,在某地对名岁以上的人进行了调查,结果是:患胃病者生活不规律的共人,患胃病者生活规律的共人,未患胃病者生活不规律的共人,未患胃病者生活规律的共人.(1)根据以上数据列出列联表;(2)能否在犯错误的概率不超过的前提下认为“岁以上的人患胃病与否和生活规律有关系?”附:,其中.18.(12分)如图,在一个水平面内,河流的两岸平行,河宽1(单位:千米)村庄A,B和供电站C恰位于一个边长为2(单位:千米)的等边三角形的三个顶点处,且A,C位于河流的两岸,村庄A侧的河岸所在直线恰经过BC的中点D.现欲在河岸上A,D之间取一点E,分别修建电缆CE和EA,EB.设∠DCE=θ,记电缆总长度为f(θ)(单位:千米).(1)求f(θ)的解析式;(2)当∠DCE为多大时,电缆的总长度f(θ)最小,并求出最小值.19.(12分)已知函数.若是的极值点.(1)求在上的最小值;(2)若不等式对任意都成立,其中为整数,为的函数,求的最大值.20.(12分)为了实现绿色发展,避免能源浪费,某市计划对居民用电实行阶梯收费.阶梯电价原则上以住宅(一套住宅为一户)的月用电量为基准定价,具体划分标准如表:阶梯级别第一阶梯电量第二阶梯电量第三阶梯电量月用电量范围(单位:kW⋅h)(0,200](200,400](400,+∞]从本市随机抽取了100户,统计了今年6月份的用电量,这100户中用电量为第一阶梯的有20户,第二阶梯的有60户,第三阶梯的有20户.(1)现从这100户中任意选取2户,求至少1户用电量为第二阶梯的概率;(2)以这100户作为样本估计全市居民的用电情况,从全市随机抽取3户,X表示用电量为第二阶梯的户数,求X的概率分布列和数学期望.21.(12分)新能源汽车的春天来了!2018年3月5日上午,李克强总理做政府工作报告时表示,将新能源汽车车辆购置税优惠政策再延长三年,自2018年1月1日至2020年12月31日,对购置的新能源汽车免征车辆购置税.某人计划于2018年5月购买一辆某品牌新能源汽车,他从当地该品牌销售网站了解到近五个月实际销量如下表:月份2017.122018.012018.022018.032018.04月份编号t12345销量(万辆)0.50.611.41.7(1)经分析,可用线性回归模型拟合当地该品牌新能源汽车实际销量(万辆)与月份编号之间的相关关系.请用最小二乘法求关于的线性回归方程,并预测2018年5月份当地该品牌新能源汽车的销量;(2)2018年6月12日,中央财政和地方财政将根据新能源汽车的最大续航里程(新能源汽车的最大续航里程是指理论上新能源汽车所装的燃料或电池所能够提供给车跑的最远里程)对购车补贴进行新一轮调整.已知某地拟购买新能源汽车的消费群体十分庞大,某调研机构对其中的200名消费者的购车补贴金额的心理预期值进行了一个抽样调查,得到如下一份频数表:补贴金额预期值区间(万元)206060302010将频率视为概率,现用随机抽样方法从该地区拟购买新能源汽车的所有消费者中随机抽取3人,记被抽取3人中对补贴金额的心理预期值不低于3万元的人数为,求的分布列及数学期望.参考公式及数据:①回归方程,其中,,②.22.(10分)已知函数,为的导数.(Ⅰ)求曲线在点处的切线方程;(Ⅱ)证明:在区间上存在唯一零点;(Ⅲ)设,若对任意,均存在,使得,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
根据简单随机抽样与系统抽样方法的定义,结合概率的意义,即可判断出每个人入选的概率.【详解】在系统抽样中,若所给的总体个数不能被样本容量整除时,则要先剔除几个个体,然后再分组,在剔除过程中,每个个体被剔除的概率相等,所以,每个个体被抽到包括两个过程,一是不被剔除,二是选中,这两个过程是相互独立的,因此,每个人入选的概率为.故选:D.本题考查简单随机抽样和系统抽样方法的应用,也考查了概率的意义,属于基础题.2、B【解析】
以特殊元素甲为主体,根据分类计数原理,计算出所有可能的情况,求得结果.【详解】甲在五楼有33甲不在五楼且不在二楼有C3由分类加法计数原理知共有54+27=81种不同的情况,故选B.该题主要考查排列组合的有关知识,需要理解排列组合的概念,根据题目要求分情况计数,属于简单题目.3、C【解析】
利用导数研究函数的单调性,零点,极值以及恒成立问题.【详解】对于①,的定义域,,令有即,可知在单调递减,在单调递增,,且当时,又,从而要使得方程有两个不同的实根,即与有两个不同的交点,所以,故①正确对于②,易知不是该方程的根,当时,,方程有且只有一个实数根,等价于和只有一个交点,,又且,令,即,有,知在和单减,在上单增,是一条渐近线,极小值为.由大致图像可知或,故②错对于③当时,恒成立,等价于恒成立,即函数在上为增函数,即恒成立,即在上恒成立,令,则,令得,有,从而在上单调递增,在上单调递减,则,于是,故③正确.对于④有两个不同极值点,等价于有两个不同的正根,即方程有两个不同的正根,由③可知,,即,则④正确.故正确命题个数为3,故选.本题考查利用导数研究函数有关性质,属于基础题目.解题时注意利用数形结合,通过函数图象得到结论.4、B【解析】由题意得所求概率为.选.5、A【解析】
从6张电影票中任选2张给甲、乙两人,共种方法;再将剩余4张票平均分给丙丁2人,共有种方法;根据分步乘法计数原理即可求得结果.【详解】分两步:先从6张电影票中任选2张给甲,乙两人,有种分法;再分配剩余的4张,而每人最多两张,所以每人各得两张,有种分法,由分步原理得,共有种分法.故选:A本题主要考查分步乘法计数原理与组合的综合问题.6、C【解析】
利用计算出定积分的值.【详解】依题意得,故选C.本小题主要考查定积分的计算,考查运算求解能力,属于基础题.7、B【解析】
分别求出两不等式的解集,根据两解集的包含关系确定.【详解】化简不等式,可知推不出;由能推出,故“”是“”的必要不充分条件,故选B.本题考查充分必要条件,解题关键是化简不等式,由集合的关系来判断条件.8、B【解析】获奖的概率为p=6C62=25,记获奖的人数为ξ,ξ~B(4,9、A【解析】分析:对照临界值表,由,从而可得结果.详解:根据所给的数据,,而,有以上的把握,认为“是否爱吃零食与性别有关”,故选A.点睛:本题主要考查独立性检验的应用,属于中档题.独立性检验的一般步骤:(1)根据样本数据制成列联表;(2)根据公式计算的值;(3)查表比较与临界值的大小关系,作统计判断.10、D【解析】试题分析:在方向上的投影为,故选D.考点:向量的投影.11、C【解析】
根据题意得到变换后的函数解析式,利用诱导公式求得结果【详解】由题,向左平移不改变周期,故,平移得到,,当时,,故选C本题考查函数的图象变换规律,利用诱导公式完成正、余弦型函数的转化12、C【解析】
先求出集合M,由此能求出M∩N.【详解】则故选:C本题考查交集的求法,考查交集定义、函数性质等基础知识,考查运算求解能力,是基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
先计算有且只有两个女生相邻的排列种数,再计算“在3名女生中,有且只有两个女生相邻,且男生甲在两端的排列”种数,即可得出结果.【详解】先考虑3名女生中,有且只有两个女生相邻的排列,共有种,在3名女生中,有且只有两个女生相邻,且男生甲在两端的排列有种,所以,满足题意的不同排法的种数为:种.故答案为:.本题主要考查计数原理的应用,属于常考题型.14、【解析】
根据排列数计算公式可求得,结合组合数的性质即可化简求值.【详解】根据排列数计算公式可得,,所以,化简可解得,则由组合数性质可得,故答案为:462.本题考查了排列数公式的简单应用,组合数性质的综合应用,属于基础题.15、240【解析】分析:甲、乙两人必须相邻,利用捆绑法与其余的人全排即可.详解:甲乙相邻全排列种排法,利用捆绑法与其余的人全排有种排法,共有,故答案为.点睛:常见排列数的求法为:(1)相邻问题采取“捆绑法”;(2)不相邻问题采取“插空法”;(3)有限制元素采取“优先法”;(4)特殊顺序问题,先让所有元素全排列,然后除以有限制元素的全排列数.16、1【解析】
由程序框图知该程序的功能是利用循环结构计算并输出变量的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【详解】模拟执行如图所示的程序框图如下,判断,第1次执行循环体后,,,;判断,第2次执行循环体后,,,;判断,第3次执行循环体后,,,;判断,退出循环,输出的值为1.本题主要考查对含有循环结构的程序框图的理解,模拟程序运算可以较好地帮助理解程序的算法功能.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)见解析【解析】分析:(1)由已知作出列联表即可;
(2)由列联表,结合计算公式,求得=,,由此判断出两个量之间的关系.详解:(1)由已知可列2×2列联表:患胃病未患胃病总计生活规律20200220生活不规律60260320总计80460540(2)根据列联表中的数据,得K2的观测值,因为9.638>6.635,因此在犯错误的概率不超过0.01的前提下认为“40岁以上的人患胃病与否和生活规律有关”.点睛:本题考查独立性检验的应用,解题的关键是给出列联表,再熟练运用公式求出卡方的值,根据所给的表格判断出有关的可能性.18、(1)f(θ)=2-sinθcosθ+3,0<θ<π3【解析】分析:易得CE=EB=1cosθ,ED=tanθ,AE=3-tanθ,f(θ)=2-sinθcosθ+3,0<θ<π3.(2)求导f'(θ)=-cos2详解:(1)易得AD垂直平分BC,CD=BD=1则CE=EB=1cosθ,ED=于是f(θ)=1cosθ因为E在CD之间,所以0<θ<π故f(θ)=2-sinθ(2)f'(θ)=-cos2令f'(θ)=0,得sinθ=故当0<θ<π6,f'(θ)<0,当π6<θ<π3.,所以,当θ=π6时,f(θ)答:当∠DCE=π6时,f(θ)最小值为点睛:此题为三角函数的实际应用题,解题时要注意分析题目中的条件,常常跟正余弦定理,三角函数比值关系等几何关系结合在一起考查,不难,但是综合性强;第二问求最值如果不能转化为三角函数求得最值,那就通过导数来分析.19、(1)2;(2)2.【解析】分析:(1)求出函数的导数,求出a的值,根据函数的单调性求出函数的最小值即可;(2)问题转化为,令,,根据函数的单调性求出k的范围即可.详解:(1),由是的极值点,得,.易知在上单调递减,在上单调递增,所有当时,在上取得最小值2.(2)由(1)知,此时,,令,,,令,,在单调递增,且,,在时,,,由,,又,且,所以的最大值为2.点睛:本题考查了函数的单调性、最值问题,考查了导数的应用以及函数恒成立问题,是一道综合题.20、(1)P(A)=139165【解析】分析:(1)设“从100户中任意抽取2户,至少1户月用电量为第二阶梯”为事件A,利用对立事件可求P(A).(2)从全市任取1户,抽到用电量为第二阶梯的概率P=6则X~B(3,35),即可求出详解:(1)设“从100户中任意抽取2户,至少1户月用电量为第二阶梯”为事件A,则P(A)=1-C(2)从全市任取1户,抽到用电量为第二阶梯的概率P=6所以X~B(3,35)X的分布列为X0123P(X=k)8365427E(X)=3×3点睛:本题考查离散型随机变量分布列及其期望的求法,考查古典概型,属基础题.21、(1)约为2万辆;(2)见解析【解析】
(1)利用最小二乘法求关于的线性回归方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 智慧仓储与物流园区建设规划方案
- 2025版中国羽毛球行业市场发展前景分析报告(智研咨询发布)
- 转让果园合同协议书范本
- 牛放线菌病临床症状及防治措施
- 2025年中国溶聚丁苯橡胶项目创业计划书
- 2025年自动化单体设备项目调研分析报告
- 2025年往复泵项目深度研究分析报告
- 2025年氧化铂项目可行性分析报告(模板参考范文)
- 通辽智能计量仪表项目可行性研究报告
- 高低压输配电设备融资投资立项项目可行性研究报告(非常详细)
- 《资源税类》课件
- 脂肪肝护理查房
- 基于无人机的公路裂缝自动检测与分类识别
- 《计量经济学》各章数据
- 房屋建筑勘察设计投标方案(技术标)
- T-SDJSXH 02-2021 建筑施工安全生产责任保险事故预防服务导则
- 爱健身app的设计与实现-毕业设计
- 《国际物流学》课程教学大纲
- 某公司首台套申报材料
- 喀斯特地区山林治理的生态恢复措施
- 八年级物理下册《实验题》专项练习题及答案(人教版)
评论
0/150
提交评论