




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省汉中市部分学校2024-2025学年高二数学第二学期期末教学质量检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.()A. B. C. D.2.正方形ABCD中,点E是DC的中点,点F是BC的一个三等分点,那么()A. B.C. D..3.在用数学归纳法证明:“凸多边形内角和为”时,第一步验证的等于()A.1 B.3 C.5 D.74.欧拉公式:为虚数单位),由瑞士数学家欧拉发明,它建立了三角函数与指数函数的关系,根据欧拉公式,()A.1 B. C. D.5.圆ρ=8sinθ的圆心到直线A.2 B.3 C.2 D.26.已知函数,其图象关于直线对称,为了得到函数的图象,只需将函数的图象上的所有点()A.先向左平移个单位长度,再把所得各点横坐标伸长为原来的2倍,纵坐标保持不变B.先向右平移个单位长度,再把所得各点横坐标缩短为原来的,纵坐标保持不变C.先向右平移个单位长度,再把所得各点横坐标伸长为原来的2倍,纵坐标保持不变D.先向左平移个单位长度,再把所得各点横坐标缩短为原来的,纵坐标保持不变7.动点在圆上移动时,它与定点连线的中点的轨迹方程是()A. B.C. D.8.某商场进行购物摸奖活动,规则是:在一个封闭的纸箱中装有标号分别为1,2,3,4,5,6的六个小球,每次摸奖需要同时取出两个球,每位顾客最多有两次摸奖机会,并规定:若第一次取出的两球号码连号,则中奖,摸奖结束;若第一次未中奖,则将这两个小球放回后进行第二次摸球,若与第一次取出的两个小球号码相同,则为中奖,按照这样的规则摸奖,中奖的概率为()A. B. C. D.9.若展开式的常数项为60,则值为()A. B. C. D.10.下面推理过程中使用了类比推理方法,其中推理正确的是()A.平面内的三条直线a,b,c,若a⊥c,b⊥c,则a//b.类比推出:空间中的三条直线a,b,c,若a⊥c,b⊥c,则a//bB.平面内的三条直线a,b,c,若a//c,b//c,则a//b.类比推出:空间中的三条向量a,b,cC.在平面内,若两个正三角形的边长的比为12,则它们的面积比为14.类比推出:在空间中,若两个正四面体的棱长的比为1D.若a,b,c,d∈R,则复数a+bi=c+di⇒a=c,b=d.类比推理:“若a,b,c,d∈Q,则a+b211.已知为非零不共线向量,设条件,条件对一切,不等式恒成立,则是的()A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件12.在的展开式中,记项的系数为,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.将半径为1和2的两个铅球,熔成一个大铅球,那么这个大铅球的表面积是__________.14.己知,集合中有且仅有三个整数,则实数的取值范围为________.15.设曲线在点处的切线方程_________________.16.在复数范围内,方程的根为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列满足,.(Ⅰ)求的值,猜想数列的通项公式并用数学归纳法证明;(Ⅱ)令,求数列的前项和.18.(12分)已知椭圆的离心率为,,分别是其左,右焦点,为椭圆上任意一点,且.(1)求椭圆的标准方程;(2)过作直线与椭圆交于两点,点在轴上,连结分别与直线交于点,若,求的值.19.(12分)已知关于的不等式的解集为(1)求实数的值;(2)求的最大值.20.(12分)如图,圆锥的展开侧面图是一个半圆,、是底面圆的两条互相垂直的直径,为母线的中点,已知过与的平面与圆锥侧面的交线是以为顶点、为对称轴的抛物线的一部分.(1)证明:圆锥的母线与底面所成的角为;(2)若圆锥的侧面积为,求抛物线焦点到准线的距离.21.(12分)已知曲线在平面直角坐标系中的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,有曲线.(1)将的方程化为普通方程,并求出的平面直角坐标方程;(2)求曲线和两交点之间的距离.22.(10分)已知定义在R上的函数fx(1)求b的值,并判断函数fx(2)若对任意的t∈R,不等式ft2-2t
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
根据定积分的运算公式,可以求接求解.【详解】解:,故选C.本题考查了定积分的计算,熟练掌握常见被积函数的原函数是解题的关键.2、D【解析】
用向量的加法和数乘法则运算。【详解】由题意:点E是DC的中点,点F是BC的一个三等分点,∴。故选:D。本题考查向量的线性运算,解题时可根据加法法则,从向量的起点到终点,然后结合向量的数乘运算即可得。3、B【解析】
多边形的边数最少是,即三角形,即可得解;【详解】解:依题意,因为多边形的边数最少是,即三角形,用数学归纳法证明:“凸多边形内角和为”时,第一步验证的等于时,是否成立,故选:本题主要考查数学归纳法的基本原理,属于简单题.用数学归纳法证明结论成立时,需要验证时成立,然后假设假设时命题成立,证明时命题也成立即可,对于第一步,要确定,其实就是确定是结论成立的最小的.4、B【解析】
由题意将复数的指数形式化为三角函数式,再由复数的运算化简即可得答案.【详解】由得故选B.本题考查欧拉公式的应用,考查三角函数值的求法与复数的化简求值,是基础题.5、C【解析】
先把圆和直线的极坐标方程化成直角坐标方程,再利用点到直线的距离公式求解.【详解】由ρ=8sinθ得x2+y直线tanθ=3的直角坐标方程为所以圆心到直线3x-y=0的距离为0-4故选:C本题主要考查极坐标方程和直角坐标方程的互化,考查点到直线的距离的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.6、D【解析】
由函数的图象关于直线对称,得,进而得再利用图像变换求解即可【详解】由函数的图象关于直线对称,得,即,解得,所以,,故只需将函数的图象上的所有点“先向左平移个单位长度,得再将横坐标缩短为原来的,纵坐标保持不变,得”即可.故选:D本题考查三角函数的图象与性质,考查图像变换,考查运算求解能力,是中档题7、B【解析】
设连线的中点为,再表示出动点的坐标,代入圆化简即可.【详解】设连线的中点为,则因为动点与定点连线的中点为,故,又在圆上,故,即即故选:B本题主要考查了轨迹方程的一般方法,属于基础题型.8、B【解析】
可将中奖的情况分成第一次两球连号和第二次取出的小球与第一次取出的号码相同两种情况,分别计算两种情况的概率,根据和事件概率公式可求得结果.【详解】中奖的情况分为:第一次取出两球号码连号和第二次取出两个小球与第一次取出的号码相同两种情况第一次取出两球连号的概率为:第二次取出两个小球与第一次取出号码相同的概率为:中奖的概率为:本题正确选项:本题考查和事件概率问题的求解,关键是能够根据题意将所求情况进行分类,进而通过古典概型和积事件概率求解方法求出每种情况对应的概率.9、D【解析】
由二项式展开式的通项公式写出第项,求出常数项的系数,列方程即可求解.【详解】因为展开式的通项为,令,则,所以常数项为,即,所以.故选D本题主要考查二项式定理的应用,熟记二项展开式的通项即可求解,属于基础题型.10、D【解析】
对四个答案中类比所得的结论逐一进行判断,即可得到答案【详解】对于A,空间中,三条直线a,b,c,若a⊥c,对于B,若b=0,则若a//b对于C,在平面上,正三角形的面积比是边长比的平方,类比推出在空间中,正四面体的体积是棱长比的立方,棱长比为12,则它们的体积比为1对于D,在有理数Q中,由a+b2=c+d2可得,b=d,故正确综上所述,故选D本题考查的知识点是类比推理,解题的关键是逐一判断命题的真假,属于基础题.11、C【解析】
条件M:条件N:对一切,不等式成立,化为:进而判断出结论.【详解】条件M:.
条件N:对一切,不等式成立,化为:.
因为,,,即,可知:由M推出N,反之也成立.
故选:C.本题考查了向量数量积运算性质、充要条件的判定方法,考查了推理能力与计算能力,属于中档题.12、C【解析】
根据题意,表示出展开式的项对应次数,由二项式定理展开式的性质即可求得各项对应的系数,即可求解.【详解】由题意记项的系数为,可知对应的项为;对应的项为;对应的项为;对应的项为;而展开式中项的系数为;对应的项的系数为;对应的项的系数为;对应的项的系数为;所以,故选:C.本题考查了二项式定理展开式及性质的简单应用,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
设大铅球的半径为,则,求出,由此能求出这个大铅球的表面积.【详解】解:设大铅球的半径为,
则,
解得,
∴这个大铅球的表面积
故答案为:.本题考查球的表面积的求法,考查球的体积、表面积等基础知识,考查运算求解能力,是基础题.14、【解析】
首先分析出集合里面必有元素1,再讨论集合为,,三种情况讨论,求的取值范围.【详解】,,所以集合里的元素一定有1,集合有3个元素,当集合是时,有,集合是空集;当集合是时,有,解得:;当集合是时,有,集合是空集;综上:的取值范围是故答案为:本题考查根据集合的元素个数求参数的取值范围,意在考查分类,转化,和计算求解能力,属于中档题型.15、【解析】
求出函数的导函数,得到函数在处的导数,即为切线的斜率,由直线方程的点斜式得答案.【详解】由题意,函数的导数为,可得曲线在点处的切线斜率为,即切线的斜率为,则曲线在点处的切线方程为,即为,即.故答案为:.本题主要考查了利用导数研究曲线上某点的切线方程,其中解答中明确曲线上某点处的切线的斜率等于函数在该点处的导数值是解答的关键,着重考查了推理与运算能力,属于基础题.16、【解析】
根据复数范围求根公式求解【详解】因为,所以方程的根为故答案为:本题考查复数范围解实系数一元二次方程,考查基本分析求解能力,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)见解析;(Ⅱ)【解析】
(Ⅰ)根据,利用递推公式,可以求出的值,可以猜想出数列的通项公式,然后按照数学归纳法的步骤证明即可;(Ⅱ)利用错位相减法,可以求出数列的前项和.【详解】解:(Ⅰ)当时,当时,当时,猜想,下面用数学归纳法证明当时,,猜想成立,假设当()时,猜想成立,即则当时,,猜想成立综上所述,对于任意,均成立(Ⅱ)由(Ⅰ)得①②由①-②得:本题考查了用数学归纳法求数列的通项公式,考查了用借位相减法求数列的前项和,考查了数学运算能力.18、(1);(2).【解析】
由题意可得,,,联立求解即可得出;
设直线l的方程为:,,直线l的方程与椭圆方程联立化为:,根据共线以及共线,可得M,N的坐标.根据,可得又,再利用根与系数的关系即可得出.【详解】(1)由题意,知又,解得.所求椭圆的标准方程为.(2)由,设直线的方程为,代入椭圆的方程,并消去,得:,显然.设,则,于是.设,由共线,得,所以,同理,.因为,所以恒成立,解得.本题考查了椭圆的标准方程及其性质,一元二次方程的根与系数的关系,向量数量积运算性质,考查了推理能力与计算能力,属于难题.19、(1);(2)4【解析】
(1)先由可得,再利用关于的不等式的解集为可得,的值;(2)先将变形为,再利用柯西不等式可得的最大值.【详解】(1)由,得则解得,(2)当且仅当,即时等号成立,故.20、(1)答案见解析(2)【解析】
(1)设底面圆的半径为,圆锥的母线,因为圆锥的侧面展开图扇形弧长与圆锥的底面圆的周长相等,列出底面半径和关系式,即可证明:圆锥的母线与底面所成的角为.(2)因为圆锥的侧面积为,即可求得其母线长.由⑴可知,可得.在平面建立坐标系,以原点,为轴正方向,设抛物线方程,代入即可求得,进而抛物线焦点到准线的距离.【详解】(1)设底面圆的半径为,圆锥的母线圆锥的侧面展开图扇形弧长与圆锥的底面圆的周长相等可得由题意可知:底面圆中故:圆锥的母线与底面所成的角为(2)圆锥的侧面积为可得,故:可得中,为的中点,可得在平面建立坐标系,以原点,为轴正方向.如图:设抛物线方程代入可得根据抛物线性质可知,抛物线焦点到准线的距离为.抛物线焦点到准线的距离.本题考查了线面夹角和抛物线相关知识.利用解析几何思想,通过建立坐标系,写出抛物线方程,研究曲线方程来求解相关的量,着重考查了推理与运算能力,属于中档试题.21、(1),.(2)6.【解析】试题分析:(1)结合题意整理所给的方程可得的方程化为普通方程,并求出的平面直角坐标方程分别为:,.(2)结合点到直线的距离公式和图形的几何特征可得曲线和两交点之间的距离是6.试题解析:(1)消参后得为,由得,∴的平面直角坐标方程为.(2)∵圆心到直线的距离,∴.22、⑴a=b=1;⑵(-∞ 【解析】试题分析:(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 租地开发旅游合同协议书
- 2025年赠与合同范本:个人房产赠与协议
- 医疗与医药行业:医疗健康产业政策法规解读与合规经营策略
- 2025国际特许经营合同
- 计算机四级考试试题及答案分享
- 药品买卖服务合同协议书
- 房屋拍卖合同协议书设置
- 商铺定金合同协议书范本
- 2025摄影器材租赁合同
- 终止建设工程合同协议书
- 2024年四川省资中县事业单位公开招聘医疗卫生岗考前冲刺模拟带答案
- 2025年福建省龙岩市中考数学二检试卷
- 2025-2030年全球商业WiFi行业市场调研及投资前景预测报告
- 2025内蒙古锡林郭勒苏能白音华发电有限公司招聘49人笔试参考题库附带答案详解
- 红色教育综合实践课件
- 人教版五下-6.1 同分母分数加减法(导学案含答案)
- 厦门市2025 届高三毕业班第四次质量检测-化学+答案
- 结肠癌影像诊断与分期课件
- 脑梗死头晕护理查房课件
- 2025物流公司货车驾驶员劳动合同
- 教学仪器设备购置申请报告 2 - 副本
评论
0/150
提交评论