西安市航空六一八中学2025年数学高二第二学期期末质量跟踪监视模拟试题含解析_第1页
西安市航空六一八中学2025年数学高二第二学期期末质量跟踪监视模拟试题含解析_第2页
西安市航空六一八中学2025年数学高二第二学期期末质量跟踪监视模拟试题含解析_第3页
西安市航空六一八中学2025年数学高二第二学期期末质量跟踪监视模拟试题含解析_第4页
西安市航空六一八中学2025年数学高二第二学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

西安市航空六一八中学2025年数学高二第二学期期末质量跟踪监视模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在平面直角坐标系中,点,直线.设圆的半径为1,圆心在直线上,若圆上存在点,使得,则圆心的横坐标的取值范围为()A. B. C. D.2.已知双曲线的左、右焦点分别为、,过作垂直于实轴的弦,若,则的离心率为()A. B. C. D.3.若复数满足为虚数单位),则()A. B. C. D.4.已知双曲线的右焦点为F2,若C的左支上存在点M,使得直线bx﹣ay=0是线段MF2的垂直平分线,则C的离心率为()A. B.2 C. D.55.若a∈R,则“a=2”是“|a|=2”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分又不必要条件6.的展开式中常数项为()A.-240 B.-160 C.240 D.1607.将红、黑、蓝、黄4个不同的小球放入3个不同的盒子,每个盒子至少放一个球,且红球和蓝球不能放在同一个盒子,则不同的放法的种数为()A.18B.24C.30D.368.下列函数一定是指数函数的是()A. B. C. D.9.某工厂生产甲、乙、丙三种型号的产品,产品数量之比为,现用分层抽样的方法抽出容量为的样本,其中甲种产品有18件,则样本容量().A.70 B.90 C.40 D.6010.已知双曲线的一条渐近线与直线垂直,则双曲线的离心率为()A. B. C. D.11.已知函数,则关于的不等式解集为()A. B. C. D.12.已知函数,其中为自然对数的底数,则对任意,下列不等式一定成立的是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知直线a,b和平面,若,且直线b在平面上,则a与的位置关系是______.14.一台机器生产某种产品,如果生产出一件甲等品可获利50元,生产出一件乙等品可获利30元,生产出一件次品,要赔20元,已知这台机器生产出甲等品、乙等品和次品的概率分别为0.6,0.3,和0.1,则这台机器每生产一件产品平均预期可获利________元.15.给出下列命题:①“”是“”的充分必要条件;②命题“若,则”的否命题是“若,则”;③设,,则“且”是“”的必要不充分条件;④设,,则“”是“”的必要不充分条件.其中正确命题的序号是_________.16.已知球O是正三棱锥(底面为正三角形,顶点在底面的射影为底面中心)A-BCD的外接球,BC=3,AB=23,点E在线段BD上,且BD=3BE,过点E作圆O的截面,则所得截面圆面积的取值范围是__三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设命题:对任意,不等式恒成立,命题存在,使得不等式成立.(1)若为真命题,求实数的取值范围;(2)若为假命题,为真命题,求实数的取值范围.18.(12分)已知1.(1)求tan()的值;(1)求3sin1θ+4cos1θ的值.19.(12分)在直角坐标系中,直线,圆,以坐标原点为极点,轴正半轴为极轴建立极坐标系.(1)求,的极坐标方程;(2)若直线的极坐标方程为,设的交点为,求的面积.20.(12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费和年销售量(=1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值.

46.6

563

6.8

289.8

1.6

1469

108.8

表中,=(Ⅰ)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;(Ⅲ)已知这种产品的年利润z与x、y的关系为z=0.2y-x.根据(Ⅱ)的结果回答下列问题:(ⅰ)年宣传费x=49时,年销售量及年利润的预报值是多少?(ⅱ)年宣传费x为何值时,年利润的预报值最大?附:对于一组数据,,……,,其回归线的斜率和截距的最小二乘估计分别为:21.(12分)已知函数的图象过点.(1)求的解析式及单调区间;(2)求在上的最小值.22.(10分)乒乓球单打比赛在甲、乙两名运动员间进行,比赛采用7局4胜制(即先胜4局者获胜,比赛结束),假设两人在每一局比赛中获胜的可能性相同.(1)求乙以4比1获胜的概率;(2)求甲获胜且比赛局数多于5局的概率.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】

设,由,利用两点间的距离公式列出关系式,整理后得到点M的轨迹为以为圆心,2为半径的圆,可记为圆D,由M在圆C上,得到圆C与圆D相交或相切,根据两圆的半径长,得出两圆心间的距离范围,利用两点间的距离公式列出不等式,求出不等式的解集,即可得到a的范围.【详解】设点,由,知:,

化简得:,

点M的轨迹为以为圆心,2为半径的圆,可记为圆D,

又点M在圆C上,圆C与圆D的关系为相交或相切,

,其中,,即可得,

故选:D.本题主要考查圆与圆的位置关系的判定,两点间的距离公式,圆和圆的位置关系的判定,属于中档题.2、C【解析】

由题意得到关于a,c的齐次式,然后求解双曲线的离心率即可.【详解】由双曲线的通径公式可得,由结合双曲线的对称性可知是等腰直角三角形,由直角三角形的性质有:,即:,据此有:,,解得:,双曲线中,故的离心率为.本题选择C选项.双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a,c,代入公式;②只需要根据一个条件得到关于a,b,c的齐次式,结合b2=c2-a2转化为a,c的齐次式,然后等式(不等式)两边分别除以a或a2转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围).3、A【解析】

根据复数的除法运算可求得;根据共轭复数的定义可得到结果.【详解】由题意得:本题正确选项:本题考查共轭复数的求解,关键是能够利用复数的除法运算求得,属于基础题.4、C【解析】

设P为直线与的交点,则OP为的中位线,求得到渐近线的距离为b,运用中位线定理和双曲线的定义,以及离心率的公式,计算可得所求值.【详解】,直线是线段的垂直平分线,可得到渐近线的距离为,且,,,可得,即为,即,可得.故选C.本题考查双曲线的定义、方程和性质,考查三角形的中位线定理,考查方程思想和运算能力,属于中档题.5、A【解析】

通过充分必要条件的定义判定即可.【详解】若a=2,显然|a|=2;若|a|=2,则a=±2,所以“a=2”是“|a|=2”的充分而不必要条件,故选A.本题主要考查充分必要条件的相关判定,难度很小.6、C【解析】

求得二项式的通项,令,代入即可求解展开式的常数项,即可求解.【详解】由题意,二项式展开式的通项为,当时,,即展开式的常数项为,故选C.本题主要考查了二项式的应用,其中解答中熟记二项展开式的通项,准确运算是解答的关键,着重考查了推理与计算能力,属于基础题.7、C【解析】解:由题意知4个小球有2个放在一个盒子里的种数是C4把这两个作为一个元素同另外两个元素在三个位置排列,有A3而红球和蓝球恰好放在同一个盒子里有A3∴编号为红球和蓝球不放到同一个盒子里的种数是C428、D【解析】

根据指数函数定义,逐项分析即可.【详解】A:中指数是,所以不是指数函数,故错误;B:是幂函数,故错误;C:中底数前系数是,所以不是指数函数,故错误;D:属于指数函数,故正确.故选D.指数函数和指数型函数:形如(且)的是指数函数,形如(且且且)的是指数型函数.9、B【解析】

用除以甲的频率,由此求得样本容量.【详解】甲的频率为,故,故选B.本小题主要考查分层抽样的知识,考查频率与样本容量的计算,属于基础题.10、C【解析】

求出双曲线的渐近线方程,再由两直线垂直的条件,可得,b=2a,再由a,b,c的关系和离心率公式,即可得到所求.【详解】双曲线的渐近线方程为,直线的斜率为,由题意有,所以,,故离心率.故选:C.本题考查双曲线的方程和性质,考查渐近线方程和离心率的求法,考查运算能力,属于基础题.11、A【解析】

由题可得为偶函数,利用导数可得的单调区间,利用函数的奇偶性和单调性转化不等式求解即可。【详解】函数的定义域为,,所以在上为偶函数;当时,,则,由于当时,,,则在上恒大于零,即在单调递增;由在上为偶函数,则在单调递减;故不等式等价于,解得;;所以不等式解集为;故答案选A本题考查利用函数的奇偶性和单调性解函数不等式,考查学生转化的思想,属于中档题。12、A【解析】

,可得在上是偶函数.函数,利用导数研究函数的单调性即可得出结果.【详解】解:,在上是偶函数.函数,,令,则,函数在上单调递增,,函数在上单调递增.,,.故选:A.本题考查利用导数研究函数的单调性、函数的奇偶性,不等式的性质,考查了推理能力与计算能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、或【解析】

本题可以利用已知条件,然后在图中画出满足条件的图例,然后可以通过图例判断出直线与平面的位置关系.【详解】直线和平面,若,且直线在平面上,则与的位置关系是:或.如图:故答案为或.本题考查直线与平面的位置关系的判断,考查直线与平面的位置关系的基本知识,考查推理能力,考查数形结合能力,当我们在判断直线与平面的位置关系时,可以借助图形判断.14、37(元)【解析】

由已知条件直接求出数学期望,即可求得结果【详解】一台机器生产某种产品,如果生产出一件甲等品可获利50元,生产出一件乙等品可获利30元,生产出一件次品,要赔20元,已知这台机器生产出甲等品、乙等品和次品的概率分别为0.6,0.3,和0.1,则这台机器每生产一件产品平均预期可获利:50×0.6+30×0.3-20×0.1=37(元).故答案为37(元)本题主要考查了期望的实际运用,由已知条件,结合公式即可计算出结果,本题较为简单。15、②④【解析】

逐项判断每个选项的正误得到答案.【详解】①当时,成立,但不成立,所以不具有必要性,错误②根据否命题的规则得命题“若,则”的否命题是“若,则”;,正确.③因为且”是“”的充分不必要条件,所以错误④因为且,所以“”是“”的必要不充分条件.正确.故答案为②④本题考查了充分必要条件,否命题,意在考查学生的综合知识运用.16、[2π,4π]【解析】

设△BDC的中心为O1,球O的半径为R,连接oO1D,OD,O1E,OE,可得R2=3+(3﹣R)2,解得R=2,过点E作圆O的截面,当截面与OE垂直时,截面的面积最小,当截面过球心时,截面面积最大,即可求解.【详解】如图,设△BDC的中心为O1,球O的半径为R,连接oO1D,OD,O1E,OE,则O1D=3sin60在Rt△OO1D中,R2=3+(3﹣R)2,解得R=2,∵BD=3BE,∴DE=2在△DEO1中,O1E=3+4-2×∴OE=O过点E作圆O的截面,当截面与OE垂直时,截面的面积最小,此时截面圆的半径为22-2当截面过球心时,截面面积最大,最大面积为4π.故答案为:[2π,4π]本题考查了球与三棱锥的组合体,考查了空间想象能力,转化思想,解题关键是要确定何时取最值,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)或【解析】

(1)考虑命题为真命题时,转化为对任意的成立,解出不等式可得出实数的取值范围;(2)考虑命题为真命题时,则可转化为对任意的成立,可解出实数的取值范围,然后由题中条件得出命题、一真一假,分真假和假真两种情况讨论,于此可求出实数的取值范围.【详解】对于成立,而,有,∴,∴存在,使得不等式成立,只需而,∴,∴;(1)若为真,则;(2)若为假命题,为真命题,则一真一假.若为假命题,为真命题,则,所以;若为假命题,为真命题,则,所以.综上,或.本题考查复合命题的真假与参数的取值范围,考查不等式在区间上成立,一般转化为最值来求解,另外在判断复合命题的真假性时,需要判断简单命题的真假,考查逻辑推理能力,属于中等题.18、(1);(1).【解析】

(1)利用齐次式求得tanθ,再利用二倍角求得tan1θ,进而利用两角差的正切求解即可;(1)利用同角三角函数的平方关系结合齐次式求解即可【详解】(1)∵1,∴tanθ,∴tan1θ.∴tan().(1)由(1)知,tanθ,∴3sin1θ+4cos1θ=6sinθcosθ+4(cos1θ–sin1θ).本题考查同角三角函数的基本关系,考查两角差的正切,二倍角公式,熟记公式是关键,是中档题19、(1),;(2).【解析】试题分析:(1)将代入的直角坐标方程,化简得,;(2)将代入,得得,所以,进而求得面积为.试题解析:(1)因为,所以的极坐标方程为,的极坐标方程为(2)将代入得得,所以因为的半径为1,则的面积为考点:坐标系与参数方程.20、(Ⅰ);(Ⅱ);(Ⅲ)(ⅰ);(ⅱ)46.24【解析】

(Ⅰ)由散点图可以判断,适合作为年销售关于年宣传费用的回归方程类型.(Ⅱ)令,先建立关于的线性回归方程,由于=,∴=563-68×6.8=100.6.∴关于的线性回归方程为,∴关于的回归方程为.(Ⅲ)(ⅰ)由(Ⅱ)知,当=49时,年销售量的预报值=576.6,.(ⅱ)根据(Ⅱ)的结果知,年利润z的预报值,∴当=,即时,取得最大值.故宣传费用为46.24千元时,年利润的预报值最大.21、(1);单调递减区间为,单调递增区间为.(2)【解析】

(1)先由函数图像过点,求出,得到函数解析式,再对函数求导,用导数的方法,即可得出函数的单调区间;(2)先令在上的最小值为,结合(1)的结果

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论