上海高中2024-2025学年数学高二下期末达标检测模拟试题含解析_第1页
上海高中2024-2025学年数学高二下期末达标检测模拟试题含解析_第2页
上海高中2024-2025学年数学高二下期末达标检测模拟试题含解析_第3页
上海高中2024-2025学年数学高二下期末达标检测模拟试题含解析_第4页
上海高中2024-2025学年数学高二下期末达标检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海高中2024-2025学年数学高二下期末达标检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某学校高三模拟考试中数学成绩服从正态分布,考生共有1000人,估计数学成绩在75分到86分之间的人数约为()人.参考数据:,)A.261 B.341 C.477 D.6832.已知的边,的长分别为20,18,,则的角平分线的长为()A. B. C. D.3.为预测某种产品的回收率y,需要研究它和原料有效成分的含量x之间的相关关系,现取了8组观察值.计算得,,,,则y对x的回归方程是()A.=11.47+2.62x B.=-11.47+2.62xC.=2.62+11.47x D.=11.47-2.62x4.已知某几何体的三视图如下,根据图中标出的尺寸(单位:),可得这个几何体的体积是()A. B. C. D.5.设集合,则()A.[-4,-2] B.(-∞,1] C.[1,+∞) D.(-2,1]6.某个几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.7.是第四象限角,,,则()A. B. C. D.8.0πsinA.2 B.0 C.-2 D.19.已知10个产品中有3个次品,现从其中抽出若干个产品,要使这3个次品全部被抽出的概率不小于0.6,则至少应抽出的产品个数为()A.7 B.8 C.9 D.1010.设P,Q分别是圆和椭圆上的点,则P,Q两点间的最大距离是()A. B.C. D.11.有六人排成一排,其中甲只能在排头或排尾,乙、丙两人必须相邻,则满足要求的排法有()A.34种 B.48种C.96种 D.144种12.若离散型随机变量的分布如下:则的方差()010.6A.0.6 B.0.4 C.0.24 D.1二、填空题:本题共4小题,每小题5分,共20分。13.设函数,若对任意的,存在,使得,则实数的取值范围是______________.14.已知函数,若,则实数的取值范围__________.15.设是虚数单位,则______.16.在等差数列中,,,则公差__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的非负半轴为极轴,建立极坐标系,圆C的极坐标方程为ρ=4cosθ,直线l与圆C交于A,B两点.(1)求圆C的直角坐标方程及弦AB的长;(2)动点P在圆C上(不与A,B重合),试求△ABP的面积的最大值.18.(12分)已知函数,.(1)若,求的取值范围;(2)若的图像与相切,求的值.19.(12分)从某班6名学生(其中男生4人,女生2人)中任选3人参加学校组织的社会实践活动.设所选3人中女生人数为,求的数学期望.20.(12分)已知,是双曲线:(、为常数,)上的两个不同点,是坐标原点,且,(1)若是等腰三角形,且它的重心是双曲线的右顶点,求双曲线的渐近线方程;(2)求面积的最小值.21.(12分)若,且(1)求的最小值;(2)是否存在,使得?并说明理由.22.(10分)选修4-4:坐标系与参数方程在平面直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为.(1)求曲线的普通方程与曲线的直角坐标方程;(2)曲线与相交于两点,求过两点且面积最小的圆的标准方程.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】分析:正态总体的取值关于对称,位于之间的概率是0.6826,根据概率求出位于这个范围中的个数,根据对称性除以2得到要求的结果.详解:正态总体的取值关于对称,位于之间的概率是,则估计数学成绩在75分到86分之间的人数约为人.故选B.点睛:题考查正态曲线的特点及曲线所表示的意义,是一个基础题,解题的关键是考试的成绩关对称,利用对称写出要用的一段分数的频数,题目得解.2、C【解析】

利用角平分线定理以及平面向量的线性运算法则可得,两边平方,利用平面向量数量积的运算法则,化简即可得结果.【详解】如图,因为是的角平分线,所以,所以,即.两边平方得,所以,故选C.本题主要考查平面向量的线性运算法则,以及平面向量数量积的运算法则,属于中档题.向量数量积的运算主要掌握两点:一是数量积的基本公式;二是向量的平方等于向量模的平方.3、A【解析】分析:根据公式计算≈2.62,≈11.47,即得结果.详解:由,直接计算得≈2.62,≈11.47,所以=2.62x+11.47.选A.点睛:函数关系是一种确定的关系,相关关系是一种非确定的关系.事实上,函数关系是两个非随机变量的关系,而相关关系是非随机变量与随机变量的关系.如果线性相关,则直接根据用公式求,写出回归方程,回归直线方程恒过点.4、C【解析】分析:由三视图知几何体是一个三棱锥,三棱锥的底面是一个边长为1,高为1的三角形,三棱锥的高为1,根据三棱锥的体积公式得到结果.详解:由三视图可知,几何体是一个三棱锥,三棱锥的底面是一个边长为,高为的三角形,面积,三棱锥的高是,所以故选C.点睛:当已知三视图去还原成几何体直观图时,首先根据三视图中关键点和视图形状确定几何体的形状,再根据投影关系和虚线明确内部结构,最后通过三视图验证几何体的正确性.5、B【解析】分析:先解不等式得出集合B,再由集合的运算法则计算.详解:由题意,,∴.故选B.点睛:本题考查集合的运算,解题关键是确定集合的元素,要注意集合的代表元是什么,由代表元确定如何求集合中的元素.6、C【解析】

根据三视图可知几何体为三棱锥,根据三棱锥体积公式直接求得结果.【详解】由三视图可知,几何体为高为的三棱锥三棱锥体积:本题正确选项:本题考查棱锥体积的求解,关键是能够根据三视图确定几何体的底面积和高,属于基础题.7、D【解析】

根据同角三角函数基本关系,得到,求解,再根据题意,即可得出结果.【详解】因为,由同角三角函数基本关系可得:,解得:,又是第四象限角,所以.故选:D.本题主要考查已知正切求正弦,熟记同角三角函数基本关系即可,属于常考题型.8、A【解析】

根据的定积分的计算法则计算即可.【详解】0πsinxdx=(-cos故选:A.本题考查了定积分的计算,关键是求出原函数,属于基础题.9、C【解析】

根据题意,设至少应抽出个产品,由题设条件建立不等式,由此能求出结果.【详解】解:要使这3个次品全部被抽出的概率不小于0.6,设至少抽出个产品,则基本事件总数为,要使这3个次品全部被抽出的基本事件个数为,由题设知:,所以,即,分别把A,B,C,D代入,得C,D均满足不等式,因为求的最小值,所以.故选:C.本题考查概率的应用,解题时要认真审题,仔细解答,注意合理的进行等价转化.10、C【解析】

求出椭圆上的点与圆心的最大距离,加上半径,即可得出P,Q两点间的最大距离.【详解】圆的圆心为M(0,6),半径为,设,则,即,∴当时,,故的最大值为.故选C.本题考查了椭圆与圆的综合,圆外任意一点到圆的最大距离是这个点到圆心的距离与圆的半径之和,根据圆外点在椭圆上,即可列出椭圆上一点到圆心的距离的解析式,结合函数最值,即可求得椭圆上一点到圆上一点的最大值.11、C【解析】试题分析:,故选C.考点:排列组合.12、C【解析】分析:由于已知分布列即可求出m的取值,进而使用期望公式先求出数学期望,再代入方差公式求出方差.详解:由题意可得:m+0.6=1,所以m=0.4,所以E(x)=0×0.4+1×0.6=0.6,所以D(x)=(0﹣0.6)2×0.4+(1﹣0.6)2×0.6=0.1.故选:C.点睛:本题主要考查离散型随机变量的分布和数学期望、方差等基础知识,熟记期望、方差的公式是解题的关键.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

由任意的,存在,使得,可得在的值域为在的值域的子集,构造关于实数的不等式,可得结论。【详解】由题可得:,令,解得:,令,解得:,令,解得:所以在上单调递增,在上单调递减,,,故在的值域为;,所以在为偶函数;当时,,由于,则,,由,即当时,,故函数在上单调递增,在单调递减,,,故在的值域为;由任意的,存在,使得,可得在的值域为在的值域的子集,则,解得:;所以实数的取值范围是本题考查利用导数求函数的最值,解题的关键是根据条件分析出在的值域为在的值域的子集,属于中档题。14、【解析】

设,再求函数的奇偶性和单调性,再利用函数的奇偶性和单调性解不等式得解.【详解】设,因为,所以函数是奇函数,其函数的图像为函数在R上单调递增,由题得,所以,所以,所以,所以.故答案为:本题主要考查函数的单调性和奇偶性及其应用,考查函数的图像和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.15、【解析】

根据复数的除法计算即可.【详解】.

故答案为:本题主要考查了复数的除法运算,属于基础题.16、2【解析】

利用等差数列的性质可得,从而.【详解】因为,故,所以,填.一般地,如果为等差数列,为其前项和,则有性质:(1)若,则;(2)且;(3)且为等差数列;(4)为等差数列.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(x-2)2+y2=4;;(2)2+.【解析】

(1)圆C的极坐标方程化为直角坐标方程,直线l的参数方程代入圆C的的直角坐标方程,利用直线参数方程的几何意义,即可求解;(2)要求△ABP的面积的最大值,只需求出点P到直线l距离的最大值,将点P坐标设为圆方程的参数形式,利用点到直线的距离公式以及三角函数的有界性,即可求解.【详解】(1)由ρ=4cosθ得ρ2=4ρcosθ,所以x2+y2-4x=0,所以圆C的直角坐标方程为(x-2)2+y2=4.设A,B对应的参数分别为t1,t2.将直线l的参数方程代入圆C:(x-2)2+y2=4,并整理得t2+t=0,解得t1=0,t2=-.所以直线l被圆C截得的弦AB的长为|t1-t2|=.(2)由题意得,直线l的普通方程为x-y-4=0.圆C的参数方程为(θ为参数),可设圆C上的动点P(2+2cosθ,2sinθ),则点P到直线l的距离d=,当=-1时,d取得最大值,且d的最大值为2+.所以S△ABP=××(2+)=2+,即△ABP的面积的最大值为2+.本题考查极坐标方程与直角坐标方程互化,考查直线参数方程几何意义的应用,以及利用圆的参数方程求最值,属于中档题.18、(1);(2)1【解析】

(1)由题意可得,设,求得导数和单调性、极值和最值,即可得到所求范围;(2)设的图象与相切于点,求得的导数,可得切线的斜率和切点满足曲线方程,解方程即可得到所求值.【详解】(1)由得.,从而,即.设.,则,()所以时,,单调递增;时,,单调递减,所以当时,取得最大值,故的取值范围是.(2)设的图像与相切于点,依题意可得因为,所以消去可得.令,则,显然在上单调递减,且,所以时,,单调递增;时,,单调递减,所以当且仅当时.故.本题主要考查导数的几何意义即函数在某点处的导数即为在改点处切线的斜率,导数与函数单调性、极值和最值的关系,由,得函数单调递增,得函数单调递减,考查方程思想和运算能力、推理能力,属于中档题.19、【解析】

的可能值为,计算概率得到分布列,再计算数学期望得到答案.【详解】的可能值为,则;;.故分布列为:故.本题考查了概率的计算,分布列,数学期望,意在考查学生的计算能力和应用能力.20、(1);(2)【解析】

(1)根据三角形重心的性质与是等腰三角形可求得的坐标,再代入双曲线方程求解即可.

(2)将双曲线:用极坐标表达,可直接设,再利用,代入求得关于的表达式再求最值即可.【详解】(1)当是等腰三角形,且它的重心是双曲线的右顶点时,可知在双曲线的右支上,且.设,则由重心性质有,故在双曲线上,故,可得,即.故双曲线的渐近线方程为.(2)由双曲线:,转换为极坐标则有,化简得,设则有,故,故,当且仅当,即,即时等号成立.故面积的最小值为.本题主要考查了圆锥曲线中面积的最值问题,因为题中有,故在求面积的最小值时,可以考虑用极坐标的方法做进行简化计算,属于难题.21、(1);(2)不存在.【解析】

(1)由已知,利用基本不等式的和积转化可求,利用基本不等式可将转化为,由不等式的传递性,可求的最小值;(2)由基本不等式可求的最小值为,而,故不存在.【详解】(1)由,得,且当时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论