重庆市江津长寿巴县等七校2024-2025学年数学高二第二学期期末综合测试模拟试题含解析_第1页
重庆市江津长寿巴县等七校2024-2025学年数学高二第二学期期末综合测试模拟试题含解析_第2页
重庆市江津长寿巴县等七校2024-2025学年数学高二第二学期期末综合测试模拟试题含解析_第3页
重庆市江津长寿巴县等七校2024-2025学年数学高二第二学期期末综合测试模拟试题含解析_第4页
重庆市江津长寿巴县等七校2024-2025学年数学高二第二学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

重庆市江津长寿巴县等七校2024-2025学年数学高二第二学期期末综合测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,,且,若,则()A. B. C. D.2.已知复数z满足(i为虚数单位),则复数z在复平面内对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知函数,对于任意,且,均存在唯一实数,使得,且,若关于的方程有4个不相等的实数根,则的取值范围是()A. B. C. D.4.已知函数是定义在上的偶函数,其导函数为,若对任意的正实数,都有恒成立,且,则使成立的实数的集合为()A. B.C. D.5.将函数的图象向左平移个单位,得到函数的图象,若在上为增函数,则的最大值为()A.2 B.4 C.6 D.86.已知,,那么等于()A. B. C. D.7.在的展开式中的系数是()A.40 B.80 C.20 D.108.已知满足,其中,则的最小值为()A. B. C. D.19.函数的最小正周期为()A. B. C. D.10.甲、乙两位同学将高三6次物理测试成绩做成如图所示的茎叶图加以比较(成绩均为整数满分100分),乙同学对其中一次成绩记忆模糊,只记得成绩不低于90分且不是满分,则甲同学的平均成绩超过乙同学的平均成绩的概率为()A. B. C. D.11.名同学合影,站成了前排人,后排人,现摄影师要从后排人中抽人站前排,其他人的相对顺序不变,则不同的调整方法的种数为()A. B. C. D.12.经过伸缩变换后所得图形的焦距()A. B. C.4 D.6二、填空题:本题共4小题,每小题5分,共20分。13.函数为上的奇函数,若对任意的且,都有,已知,则不等式的解集为______.14.端午节小长假期间,张洋与几位同学从天津乘到大连去旅游,若当天从天津到大连的三列火车正点到达的概率分别为,,,假设这三列火车之间是否正点到达互不影响,则这三列火车恰好有两列正点到达的概率是____.15.,则使成立的值是____________.16.复数(是虚数单位)的虚部为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)“DD共享单车”是为城市人群提供便捷经济、绿色低碳的环保出行方式,根据目前在三明市的投放量与使用的情况,有人作了抽样调查,抽取年龄在二十至五十岁的不同性别的骑行者,统计数据如下表所示:男性女性合计20~35岁4010036~50岁4090合计10090190(1)求统计数据表中的值;(2)假设用抽到的100名20~35岁年龄的骑行者作为样本估计全市的该年龄段男女使用“DD共享单车”情况,现从全市的该年龄段骑行者中随机抽取3人,求恰有一名女性的概率;(3)根据以上列联表,判断使用“DD共享单车”的人群中,能否有的把握认为“性别”与“年龄”有关,并说明理由.参考数表:参考公式:,.18.(12分)已知函数,;.(1)求的最大值;(2)若对,总存在使得成立,求的取值范围;(3)证明不等式.19.(12分)已知:在中,,,分别提角,,所对的边长,.判断的形状;若,,求的面积.20.(12分)已知椭圆的左焦点为,右顶点为,上顶点为,,(为坐标原点).(1)求椭圆的方程;(2)定义:曲线在点处的切线方程为.若抛物线上存在点(不与原点重合)处的切线交椭圆于、两点,线段的中点为.直线与过点且平行于轴的直线的交点为,证明:点必在定直线上.21.(12分)为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛.(1)设为事件“选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会”,求事件发生的概率;(2)设为选出的4人中种子选手的人数,求随机变量的分布列和数学期望.22.(10分)为迎接月日的“全民健身日”,某大学学生会从全体男生中随机抽取名男生参加米中长跑测试,经测试得到每个男生的跑步所用时间的茎叶图(小数点前一位数字为茎,小数点的后一位数字为叶),如图,若跑步时间不高于秒,则称为“好体能”.(Ⅰ)写出这组数据的众数和中位数;(Ⅱ)要从这人中随机选取人,求至少有人是“好体能”的概率;(Ⅲ)以这人的样本数据来估计整个学校男生的总体数据,若从该校男生(人数众多)任取人,记表示抽到“好体能”学生的人数,求的分布列及数学期望.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】当时有,所以,得出,由于,所以.故选B.2、A【解析】

算出后可得其对应的点所处的象限.【详解】因为,故,其对应的点为,它在第一象限,故选A.本题考查复数的除法及复数的几何意义,属于基础题.3、A【解析】

解:由题意可知f(x)在[0,+∞)上单调递增,值域为[m,+∞),∵对于任意s∈R,且s≠0,均存在唯一实数t,使得f(s)=f(t),且s≠t,∴f(x)在(﹣∞,0)上是减函数,值域为(m,+∞),∴a<0,且﹣b+1=m,即b=1﹣m.∵|f(x)|=f()有4个不相等的实数根,∴0<f()<﹣m,又m<﹣1,∴0m,即0<(1)m<﹣m,∴﹣4<a<﹣2,∴则a的取值范围是(﹣4,﹣2),故选A.点睛:本题中涉及根据函数零点求参数取值,是高考经常涉及的重点问题,(1)利用零点存在的判定定理构建不等式求解;(2)分离参数后转化为函数的值域(最值)问题求解,如果涉及由几个零点时,还需考虑函数的图象与参数的交点个数;(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.4、B【解析】

抽象函数解不等式考虑用函数的单调性,构造函数,可得为偶函数,且在在上为增函数,将不等式化为,即可求解.【详解】令,易知函数为偶函数,当时,,所以在上为增函数,所以,即,所以,解之得.故选:B.本题考查抽象函数不等式,利用函数的单调性将不等式等价转换,解题的关键构造函数,构造函数通常从已知条件不等式或所求不等式结构特征入手,属于中档题.5、C【解析】,向左平移个单位,得到函数的图象,所以,因为,所以即的最大值为6,选C.点睛:三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母而言.由求增区间;由求减区间.6、B【解析】

根据条件概率公式得出可计算出结果.【详解】由条件概率公式得,故选B.本题考查条件概率的计算,利用条件概率公式进行计算是解本题的关键,属于基础题.7、A【解析】

把按照二项式定理展开,可得的展开式中的系数.【详解】解:由的展开式中,,令,可得,可得的展开式中的系数是:,故选:A.本题主要考查二项式展开式及二项式系数的性质,属于基础题型.8、C【解析】

令,利用导数可求得单调性,确定,进而得到结果.【详解】令,则.,由得:;由得:,在上单调递减,在上单调递增,,即的最小值为.故选:.本题考查函数最值的求解问题,关键是能够利用导数确定函数的单调性,进而确定最值点.9、B【解析】

先利用二倍角的余弦公式化简函数解析式,然后利用周期公式可求答案.【详解】函数的最小正周期为:本题正确选项:本题考查三角函数的周期性及其求法,考查二倍角的余弦公式,属基础题.10、C【解析】

首先求得甲的平均数,然后结合题意确定污损的数字可能的取值,最后利用古典概型计算公式求解其概率值即可.【详解】由题意可得:,设被污损的数字为x,则:,满足题意时,,即:,即x可能的取值为,结合古典概型计算公式可得满足题意的概率值:.故选C.本题主要考查茎叶图的识别与阅读,平均数的计算方法,古典概型计算公式等知识,意在考查学生的转化能力和计算求解能力.11、C【解析】分析:首先从后排的7人中选出2人,有C72种结果,再把两个人在5个位置中选2个位置进行排列有A52,利用乘法原理可得结论.详解:由题意知本题是一个分步计数问题,首先从后排的7人中选出2人,有C72种结果,再把两个人在5个位置中选2个位置进行排列有A52,∴不同的调整方法有C72A52,故选:C点睛:解答排列、组合问题的角度:解答排列、组合应用题要从“分析”、“分辨”、“分类”、“分步”的角度入手;(1)“分析”就是找出题目的条件、结论,哪些是“元素”,哪些是“位置”;(2)“分辨”就是辨别是排列还是组合,对某些元素的位置有、无限制等;(3)“分类”就是将较复杂的应用题中的元素分成互相排斥的几类,然后逐类解决;(4)“分步”就是把问题化成几个互相联系的步骤,而每一步都是简单的排列、组合问题,然后逐步解决.12、A【解析】

用,表示出,,代入原方程得出变换后的方程,从而得出焦距.【详解】由得,代入得,∴椭圆的焦距为,故选A.本题主要考查了伸缩变换,椭圆的基本性质,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

根据题意,可得函数在上的单调性,结合可得在上的符号,利用函数的奇偶性可得在上,,则上,,即可分析的解,可得答案.【详解】根据题意,若对任意的,且,都有,

则在上为增函数,

又由,则在上,,则在上,,

又由为奇函数,则在上,,则上,,

或,即或或或

解得:,

即不等式的解集为;

故答案为:本题主要考查函数的奇偶性与单调性的综合应用,涉及不等式的解法,属于中档题.14、【解析】设当天从天津到大连的三列火车正点到达的事件分别为A,B,C,则,事件A,B,C相互独立,∴这三列火车恰好有两列正点到达的概率:,故答案为:0.398.15、-4或2【解析】

当0时,;当时,.由此求出使成立的值.【详解】,当0时,解得当时,,解得故答案为-4或2.本题考查函数值的求法及应用,是基础题,解题时要认真审题,注意函数性质的合理运用.16、1【解析】

先将复数化简,再求虚部即可【详解】,所以复数的虚部为:1故答案为1本题考查复数的基本概念,在复数中,实部为,虚部为,属于基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),.(2);(3)答案见解析.【解析】试题分析:(1)由题意结合题中所给的列联表可得,.(2)由题意结合二项分布的概率公式可得恰有一名女性的概率是;(3)利用独立性检验的结论求得.所以在使用共享单车的人群中,有的把握认为“性别”与“年龄”有关.试题解析:(1),.(2)依题意得,每一次抽到女性的概率,故抽取的3人中恰有一名女性的概率.(3).所以在使用共享单车的人群中,有的把握认为“性别”与“年龄”有关.点睛:独立性检验得出的结论是带有概率性质的,只能说结论成立的概率有多大,而不能完全肯定一个结论,因此才出现了临界值表,在分析问题时一定要注意这点,不可对某个问题下确定性结论,否则就可能对统计计算的结果作出错误的解释.18、【解析】试题分析:(1)对函数求导,,时,,当时,,函数单调递增,当时,,函数单调递减,所以当时,函数取得极大值,也是最大值,所以的最大值为;(2)若对,总存在使得成立,则转化为,由(1)知,问题转化为求函数在区间上的最大值,对求导,,分类讨论,当时,函数在上恒成立,在上单调递增,只需满足,,解得,所以;当时,时,(舍),当时,在上恒成立,只需满足,,解得,当,即时,在递减,递增,而,在为正,在为负,∴,当,而时,,不合题意,可以求出的取值范围。(3)由(1)知:即,取,∴,∴,即∴,等号右端为等比数列求和。试题解析:(1)∵,∴,∴当时,,时,,∴,∴的最大值为.(2),使得成立,等价于由(1)知,,当时,在时恒为正,满足题意.当时,,令,解得,∴在上单调递减,在上单调递增,若,即时,,∴,∴.若,即时,在递减,递增,而,在为正,在为负,∴,当,而时,,不合题意,综上的取值范围为.(3)由(1)知:即,取,∴,∴,即∴.考点:1.导数与函数的单调性和极值;2.导数的综合应用。19、等腰三角形或直角三角形;.【解析】

利用正弦定理化边为角,可得,得到,或,由此可得出结论;当时,可知为等腰三角形,则,利用余弦定理求出,再由三角形面积公式求解即可得出结果.【详解】解:,则,即,.,是的内角,,或,为等腰三角形或直角三角形.由及知,为等腰三角形,.根据余弦定理,得,解得,,的面积.本题考查三角形的性质判断,考查余弦定理的应用,属于中档题.20、(1);(2)见解析.【解析】

(1)由得出,再由得出,求出、的值,从而得出椭圆的标准方程;(2)设点的坐标为,根据中定义得出直线的方程,并设点、,,将直线的方程与椭圆的方程联立,列出韦达定理,利用中点坐标公式求出点的坐标,得出直线的方程与的方程联立,求出点的坐标,可得出点所在的定直线的方程.【详解】(1)由,可知,即.,,,可得,联立.得,则,所以,所以椭圆的方程为;(2)设点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论