




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省红河州2024-2025学年数学高二第二学期期末监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.将函数图象上的点向右平移个单位长度得到点,若位于函数的图象上,则()A.,的最小值为 B.,的最小值为C.,的最小值为 D.,的最小值为2.由曲线,直线所围成的平面图形的面积为()A. B. C. D.3.设方程的两个根为,则()A. B. C. D.4.用反证法证明命题:“三角形的内角中至少有一个不大于60°”时,反设正确的是()A.假设三内角都不大于60° B.假设三内角都大于60°C.假设三内角至多有一个大于60° D.假设三内角至多有两个大于60°5.已知函数,若,则A. B. C. D.6.推理“①圆内接四边形的对角和为;②等腰梯形是圆内接四边形;③”中的小前提是()A.① B.② C.③ D.①和②7.(2x-3y)9A.-1 B.512 C.-512 D.18.设a,b均为正实数,则“”是“”的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件9.已知a=1,b=3-2A.a>b>c B.a>c>b C.b>c>a D.c>b>a10.是虚数单位,若,则的值是()A. B. C. D.11.复数等于()A. B. C.0 D.12.已知奇函数在上是单调函数,函数是其导函数,当时,,则使成立的的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知复数满足,则的取值范围是__________.14.对于三次函数,定义:设是函数的导数的导数,若方程有实数解,则称点为函数的“拐点”,有同学发现“任何一个三次函数都有‘拐点’;任何一个三次函数都有对称中心;且‘拐点’就是对称中心.”根据此发现,若函数,计算__________.15.某公司生产甲、乙、丙三种型号的吊车,产量分别为120台,600台和200台,为检验该公司的产品质量,现用分层抽样的方法抽取46台进行检验,则抽到乙种型号的吊车应是____台.16.函数的单调递减区间是_________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)甲乙两名选手在同一条件下射击,所得环数的分布列分别为678910P0.160.140.420.10.18678910P0.190.240.120.280.17(I)分别求两名选手射击环数的期望;(II)某比赛需从二人中选一人参赛,已知对手的平均水平在7.5环左右,你认为选谁参赛获胜可能性更大一些?18.(12分)命题方程表示双曲线;命题不等式的解集是.为假,为真,求的取值范围.19.(12分)在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.(1)求和的直角坐标方程;(2)已知直线与轴交于点,且与曲线交于两点,求的值.20.(12分)已知函数在处取得极值.(1)求实数a的值;(2)若关于x的方程在区间上恰有两个不同的实数根,求实数b的取值范围.21.(12分)“过大年,吃水饺”是我国不少地方过春节的一大习俗.2018年春节前夕,市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标,检测结果如频率分布直方图所示.(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数(同一组中数据用该组区间的中点值作代表);(2)①由直方图可以认为,速冻水饺的该项质量指标值服从正态分布,利用该正态分布,求落在内的概率;②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4包速冻水饺中这种质量指标值位于内的包数为,求的分布列和数学期望.附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为;②若,则,.22.(10分)如图,一条小河岸边有相距的两个村庄(村庄视为岸边上两点),在小河另一侧有一集镇(集镇视为点),到岸边的距离为,河宽为,通过测量可知,与的正切值之比为.当地政府为方便村民出行,拟在小河上建一座桥(分别为两岸上的点,且垂直河岸,在的左侧),建桥要求:两村所有人到集镇所走距离之和最短,已知两村的人口数分别是人、人,假设一年中每人去集镇的次数均为次.设.(小河河岸视为两条平行直线)(1)记为一年中两村所有人到集镇所走距离之和,试用表示;(2)试确定的余弦值,使得最小,从而符合建桥要求.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由题意得由题意得所以,因此当时,的最小值为,选A.点睛:三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母而言.2、C【解析】
由,解得,解得,解得,所围成的平面图形的面积为,则,,故选C.3、D【解析】
画出方程左右两边所对应的函数图像,结合图像可知答案。【详解】画出函数与的图像,如图结合图像容易知道这两个函数的图像有两个交点,交点的横坐标即为方程的两个根,结合图像可知,,根据是减函数可得,所以有图像可知所以即,则,所以,而所以故选D本题考查对数函数与指数函数的图像与性质,解题的关键是画出图像,利用图像解答,属于一般题。4、B【解析】
“至少有一个”的否定变换为“一个都没有”,即可求出结论.【详解】“三角形的内角中至少有一个不大于60°”时,反设是假设三内角都大于.故选:B.本题考查反证法的概念,注意逻辑用语的否定,属于基础题.5、D【解析】分析:求出函数的导数,由可求得.详解:函数的导数,由可得选D.点睛:本题考查函数的导函数的概念及应用,属基础题.6、B【解析】
由演绎推理三段论可知,①是大前提;②是小前提;③是结论.【详解】由演绎推理三段论可知,①是大前提;②是小前提;③是结论,故选B.本题主要考查演绎推理的一般模式.7、B【解析】
(a+b)n展开式中所有项的二项系数和为【详解】(a+b)n展开式中所有项的二项系数和为2(2x-3y)9的展开式中各项的二项式系数之和为2故答案选B本题考查了二项系数和,属于基础题型.8、A【解析】
确定两个命题和的真假可得.【详解】∵a,b均为正实数,若,则,命题为真;若,满足,但,故为假命题.因此“”是“”的充分不必要条件.故选:A.本题考查充分必要条件的判断.解题时必须根据定义确定命题和的真假.也可与集合包含关系联系.9、A【解析】
将b、c进行分子有理化,分子均化为1,然后利用分式的基本性质可得出三个数的大小关系。【详解】由3而3+2<6+5,所以b>c,又本题考查比较大小,在含有根式的数中,一般采用有理化以及平方的方式来比较大小,考查分析问题的能力,属于中等题。10、C【解析】
11、A【解析】
直接化简得到答案.【详解】.故选:.本题考查了复数的化简,属于简单题.12、A【解析】
将不等式变形,并构造函数,利用导函数可判断在时的取值情况;根据奇函数性质,即可判断当时的符号,进而得解.【详解】当时,,即;令,则,由题意可知,即在时单调递减,且,所以当时,,由于此时,则不合题意;当时,,由于此时,则不合题意;由以上可知时,而是上的奇函数,则当时,恒成立,所以使成立的的取值范围为,故选:A.本题考查了导数与函数单调性的关系,利用构造函数法分析函数单调性,奇函数性质解不等式,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】因为,则复数对应的点在以原点为圆心,半径为的圆上.表示复数对应的点与点的距离,故.14、1【解析】分析:求出二阶导数,再求出的拐点,即对称点,利用对称性可求值.详解:,,由得,,即的图象关于点对称,∴,∴.故答案为1.点睛:本题考查导数的计算,考查新定义,解题关键是正确理解新概念,转化新定义.通过求出的拐点,得出对称中心,从而利用配对法求得函数值的和.15、30;【解析】
根据分层抽样的特点,抽出样本46台中乙种型号的吊车的比例,与总体中乙种型号的吊车的比例相等.【详解】抽到乙种型号的吊车x台,则x46=600本题考查简单随机抽样中的分层抽样.16、或【解析】
求出导函数,然后在定义域内解不等式得减区间.【详解】,由,又得.∴减区间为,答也对.故答案为或.本题考查导数与函数的单调性,一般由确定增区间,由确定减区间.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1).(2)甲稳定,甲参赛获胜可能性更大一些.【解析】分析:(1)根据期望和方差的公式得到数值;(2)根据第一问得到的数据,方差小的发挥稳定一些.详解:(1)(2)因为所以甲稳定,甲参赛获胜可能性更大一些.点睛:这个题目考查了期望和方差的计算公式,以及两个数据在实际中的应用,方差能够说明数据的离散程度,期望说明数据的平均值,从选手发挥稳定的角度来说,应该选择方差小的.18、【解析】分析:先化简命题p和q,再根据为假,为真得到真假或假真,最后得到m的不等式组,解不等式组即得m的取值范围.详解:真:,真:或∴因为为假,为真所以真假或假真,真假得假真得∴范围为.点睛:(1)本题主要考查命题的化简和复合命题的真假,意在考查学生对这些知识的掌握水平.(2)复合命题真假判定的口诀:真“非”假,假“非”真,一真“或”为真,两真“且”才真.19、(1)直线的直角坐标方程为,曲线的普通方程为(2)【解析】
(1)利用极坐标化直角坐标的公式求直线l的直线坐标方程,消参求出曲线的普通方程;(2)直线的参数方程为(为参数),代入,得,再利用直线参数方程t的几何意义求的值.【详解】解:(1)因为直线的极坐标方程为,所以直线的直角坐标方程为.因为曲线的参数方程为(为参数),所以曲线的普通方程为.(2)由题可知所以直线的参数方程为(为参数),代入,得,设两点所对应的参数分别为,即,,本题主要考查极坐标参数方程和直角坐标的互化,考查直线参数方程t的几何意义,意在考查学生对这些知识的理解掌握水平,属于基础题.20、(1);(2).【解析】
(Ⅰ)函数,对其进行求导,在处取得极值,可得,求得值;
(Ⅱ)由知,得令则关于的方程在区间上恰有两个不同的实数根,转化为上恰有两个不同实数根,对对进行求导,从而求出的范围;【详解】(Ⅰ)时,取得极值,故解得.经检验符合题意.(Ⅱ)由知,得令则在上恰有两个不同的实数根,等价于上恰有两个不同实数根.当时,,于是上单调递增;当时,,于是在上单调递增;依题意有.本题考查利用导数研究函数的极值及单调性以及方程的实数根问题,解题过程中用到了分类讨论的思想,分类讨论的思想也是高考的一个重要思想,要注意体会其在解题中的运用,属中档题.21、(1)26.5(2)①0.6826②见解析【解析】试题分析:(1)根据频率分布直方图,直方图各矩形中点值的横坐标与纵坐标的积的和就是所抽取的100包速冻水饺该项质量指标值的样本平均数;(2)①根据服从正态分布,从而求出;②根据题意得,的可能取值为,根据独立重复试验概率公式求出各随机变量对应的概率,从而可得分布列,进而利用二项分布的期望公式可得的数学期望.试题解析:(1)所抽取的100包速冻水饺该项质量指标值的样本平均数为:.(2)①∵服从正态分布,且,,∴,∴落在内的概率是.②根据题意得,;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 三级数据库考试知识网络试题及答案
- 学校扶贫部门管理制度
- 公路工程多媒体展示技术试题及答案
- 公司疫情门卫管理制度
- 库房存储安全管理制度
- 安全生产瓦斯管理制度
- 安全监测设施管理制度
- 工厂配件领用管理制度
- 公路交通组织设计试题及答案
- 前台工作安全管理制度
- 2023年新疆初中学业水平考试地理试卷真题(含答案)
- 患者出入量的规范记录
- 企业重组涉税业务分析与实际操作优秀
- 2022年太原市小店区社会工作者招聘考试试题
- 地下管道保护方案
- 【知识解析】中途岛海战
- 教育学心理学考试题
- 美育智慧树知到答案章节测试2023年
- 中国世界文化遗产监测预警指标体系
- 抗渗混凝土抗渗试验方法
- GB/T 11023-2018高压开关设备六氟化硫气体密封试验方法
评论
0/150
提交评论