云南省曲靖市宣威九中2024-2025学年数学高二第二学期期末考试模拟试题含解析_第1页
云南省曲靖市宣威九中2024-2025学年数学高二第二学期期末考试模拟试题含解析_第2页
云南省曲靖市宣威九中2024-2025学年数学高二第二学期期末考试模拟试题含解析_第3页
云南省曲靖市宣威九中2024-2025学年数学高二第二学期期末考试模拟试题含解析_第4页
云南省曲靖市宣威九中2024-2025学年数学高二第二学期期末考试模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省曲靖市宣威九中2024-2025学年数学高二第二学期期末考试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.展开式中的常数项为A.B.C.D.2.将一枚质地均匀且各面分别有狗,猪,羊,马图案的正四面体玩具抛掷两次,设事件{两次掷的玩具底面图案不相同},{两次掷的玩具底面图案至少出现一次小狗},则()A. B. C. D.3.8张卡片上分别写有数字,从中随机取出2张,记事件“所取2张卡片上的数字之和为偶数”,事件“所取2张卡片上的数字之和小于9”,则()A. B. C. D.4.已知某超市为顾客提供四种结账方式:现金、支付宝、微信、银联卡.若顾客甲没有银联卡,顾客乙只带了现金,顾客丙、丁用哪种方式结账都可以,这四名顾客购物后,恰好用了其中的三种结账方式,那么他们结账方式的可能情况有()种A.19 B.7 C.26 D.125.在平面几何里有射影定理:设三角形的两边,是点在上的射影,则.拓展到空间,在四面体中,面,点是在面内的射影,且在内,类比平面三角形射影定理,得出正确的结论是()A. B.C. D.6.设,且,则下列不等式恒成立的是()A. B.C. D.7.在复平面内,复数(为虚数单位)对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.若,则()A. B. C. D.9.已知A(2,-5,1),B(2,-4,2),C(1,-4,1),则与的夹角为()A.30° B.60° C.45° D.90°10.如图,平面ABCD⊥平面ABEF,四边形ABCD是正方形,四边形ABEF是矩形,且AF=12A.66 B.33 C.611.执行如右图所示的程序框图,则输出的的值是()A.7 B.6 C.5 D.312.已知函数f(x)=ex(x-b)(b∈R).若存在x∈,使得f(x)+xf′(x)>0,则实数b的取值范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知四边形为矩形,,为的中点,将沿折起,得到四棱锥,设的中点为,在翻折过程中,得到如下有三个命题:①平面,且的长度为定值;②三棱锥的最大体积为;③在翻折过程中,存在某个位置,使得.其中正确命题的序号为__________.(写出所有正确结论的序号)14.如果曲线上的动点到定点的距离存在最小值,则称此最小值为点到曲线的距离.若点到圆的距离等于它到直线的距离,则点的轨迹方程是______.15.已知等比数列的首项为,且,则__________.16.曲线在点处的切线平行于直线,则点的坐标为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,已知直线的参数方程为(为参数).以坐标原点为极点,以坐标原点为极点,轴的非负半轴为极轴,取相同的长度单位建立极坐标系,曲线的极坐标方程为.(Ⅰ)求直线的普通方程和曲线的直角坐标方程;(Ⅱ)若曲线上的点到直线的最大距离为6,求实数的值.18.(12分)已知复数,,其中,为虚数单位.(1)若复数为纯虚数,求实数的值;(2)在复平面内,若复数对应的点在第四象限,求实数的取值范围.19.(12分)某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了月日至月日的每天昼夜温差与实验室每天每颗种子中的发芽数,得到如下资料:日期月日月日月日月日月日温差发芽数(颗)该农科所确定的研究方案是:先从这五组数据中选取组,用剩下的组数据求线性回归方程,再对被选取的组数据进行检验.(1)求选取的组数据恰好是不相邻天数据的概率;(2)若选取的是月日与月日的两组数据,请根据月日至月日的数据,求出关于的线性回归方程;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?20.(12分)(1)设k,,且,求证:;(2)求满足的正整数n的最大值;21.(12分)已知函数.(1)当时,证明:;(2)若在的最大值为2,求a的值.22.(10分)在平面直角坐标系中,对于点、直线,我们称为点到直线的方向距离.(1)设双曲线上的任意一点到直线,的方向距离分别为,求的值;(2)设点、到直线的方向距离分别为,试问是否存在实数,对任意的都有成立?说明理由;(3)已知直线和椭圆,设椭圆的两个焦点到直线的方向距离分别为满足,且直线与轴的交点为、与轴的交点为,试比较的长与的大小.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】解:因为则可知展开式中常数项为,选B2、C【解析】

利用条件概率公式得到答案.【详解】故答案选C本题考查了条件概率的计算,意在考查学生的计算能力.3、C【解析】

利用古典概型的概率公式计算出和,再利用条件概率公式可得出答案。【详解】事件为“所取张卡片上的数字之和为小于的偶数”,以为一个基本事件,则事件包含的基本事件有:、、、、、,共个,由古典概型的概率公式可得,事件为“所取张卡片上的数字之和为偶数”,则所取的两个数全是奇数或全是偶数,由古典概型的概率公式可得,因此,,故选:C。本题考查条件概率的计算,数量利用条件概率公式,是解本题的关键,同时也考查了古典概型的概率公式,考查运算求解能力,属于中等题。4、C【解析】

由题意,根据甲丙丁的支付方式进行分类,根据分类计数原理即可求出.【详解】顾客甲没有银联卡,顾客乙只带了现金,顾客丙、丁用哪种方式结账都可以,

①当甲丙丁顾客都不选微信时,则甲有2种选择,当甲选择现金时,其余2人种,

当甲选择支付宝时,丙丁可以都选银联卡,或者其中一人选择银联卡,另一人只能选支付宝或现金,故有,故有2+5=7种,

②当甲丙丁顾客都不选支付宝时,则甲有2种选择,当甲选择现金时,其余2人种,

当甲选择微信时,丙丁可以都选银联卡,或者其中一人选择银联卡,另一人只能选微信或现金,故有,故有2+5=7种,

③当甲丙丁顾客都不选银联卡时,若有人使用现金,则,若没有人使用现金,则有种,故有6+6=12种,根据分步计数原理可得共有7+7+6+6=26种,

故选C.本题考查了分步计数原理和分类计数原理,考查了转化思想,属于难题.5、A【解析】

由平面图形到空间图形的类比推理中,一般是由点的性质类比推理到线的性质,由线的性质类比推理到面的性质,即可求解,得到答案.【详解】由已知在平面几何中,若中,是垂足,则,类比这一性质,推理出:若三棱锥中,面面,为垂足,则.故选A.本题主要考查了类比推理的应用,其中类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想),着重考查了推理能力,属于基础题.6、D【解析】

逐一分析选项,得到正确答案.【详解】由已知可知,可以是正数,负数或0,A.不确定,所以不正确;B.当时,两边同时乘以,应该,所以不正确;C.因为有可能等于0,所以,所以不正确;D.当时,两边同时乘以,,所以正确.故选D.本题考查了不等式的基本性质,属于简单题型.7、B【解析】

对复数进行整理化简,从得到其在复平面所对应的点,得到答案.【详解】复数,所以复数在复平面对应的点的坐标为,位于第二象限.故选:B.本题考查复数的乘法运算,考查复数在复平面对应点所在象限,属于简单题.8、C【解析】分析:由题意根据二项式展开式的通项公式可得,再分别求得的值,从而可得结果.详解:由常数项为零,根据二项式展开式的通项公式可得,且,,,故选C.点睛:本题主要考查二项展开式定理的通项与系数,属于简单题.二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.9、B【解析】分析:由题意可得,,进而得到与,再由,可得结论.详解:,,,并且,,与的夹角为,故选B.点睛:本题主要考查空间向量夹角余弦公式,属于中档题.解决此类问题的关键是熟练掌握由空间点的坐标写出向量的坐标与向量求模.10、C【解析】如图,以A为原点建立空间直角坐标系,则A(0,0,0),B(0,2a,0),C(0,2a,2a),G(a,a,0),F(a,0,0),AG=(a,a,0),AC=(0,2a,2a),BG=(a,-a,0),BC=(0,0,2a),设平面AGC的法向量为n1=(x1,y1,1),由AG⋅n1=0AC⋅nsinθ=BG⋅n1|BG11、B【解析】,,判断否,,,判断否,,判断是,输出,故选.12、A【解析】,若存在,使得,即存在,使得,即在恒成立,令,则,所以在上单调递增,所以,故,所以的取值范围是,故选A.二、填空题:本题共4小题,每小题5分,共20分。13、①②【解析】

取的中点,连接、,证明四边形为平行四边形,得出,可判断出命题①的正误;由为的中点,可知三棱锥的体积为三棱锥的一半,并由平面平面,得出三棱锥体积的最大值,可判断出命题②的正误;取的中点,连接,由,结合得出平面,推出得出矛盾,可判断出命题③的正误.【详解】如下图所示:对于命题①,取的中点,连接、,则,,,由勾股定理得,易知,且,、分别为、的中点,所以,,四边形为平行四边形,,,平面,平面,平面,命题①正确;对于命题②,由为的中点,可知三棱锥的体积为三棱锥的一半,当平面平面时,三棱锥体积取最大值,取的中点,则,且,平面平面,平面平面,,平面,平面,的面积为,所以,三棱锥的体积的最大值为,则三棱锥的体积的最大值为,命题②正确;对于命题③,,为的中点,所以,,若,且,平面,由于平面,,事实上,易得,,,由勾股定理可得,这与矛盾,命题③错误.故答案为①②.本题考查直线与平面平行、锥体体积的计算以及异面直线垂直的判定,判断这些命题时根据相关的判定定理以及性质定理,在计算三棱锥体积时,需要找到合适的底面与高来计算,考查空间想象能力,考查逻辑推理能力,属于难题.14、【解析】

易得点到圆的距离等于点到圆心的距离减去半径.再求出点到直线的距离列出方程进行化简即可.【详解】由题点到圆的距离等于点到圆心的距离减去半径.当时,显然不能满足点到圆的距离等于它到直线的距离.故,此时,两边平方有.故答案为:本题主要考查了轨迹方程的求解方法,重点是列出距离相等的方程,再化简方程即可.属于基础题型.15、【解析】

先由等比数列的通项公式得到,进而得到,再根据等比数列的性质得到结果.【详解】设等比数列的公比为,因为,根据等比数列的通项公式的计算得到:,所以.由等比数列的性质得到:.故答案为:128.这个题目考查了等比数列的通项公式的写法,以及等比数列的性质的应用,题目比较基础.对于等比等差数列的小题,常用到的方法,其一是化为基本量即首项和公比或者公差,其二是观察各项间的脚码关系,即利用数列的基本性质.16、或【解析】

求出函数的导数,令,解出的值,再将的值代入函数的解析式可得出点的坐标.【详解】,,令,即,解得,,,因此,点的坐标为或,故答案为:或.本题考查导数的几何意义,利用切线与直线的位置关系求切点坐标,解题时要利用已知条件得出导数值与直线斜率之间的关系,考查运算求解能力,属于中等题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)直线的普通方程为.曲线的直角坐标方程为;(Ⅱ).【解析】分析:(Ⅰ)消去参数m可得直线的普通方程为.极坐标方程化为直角坐标方程可得曲线的直角坐标方程为.(Ⅱ)由题意结合直线与圆的位置关系整理计算可得.详解:(Ⅰ)由得,消去,得,所以直线的普通方程为.由,得,代入,得,所以曲线的直角坐标方程为.(Ⅱ)曲线:的圆心为,半径为,圆心到直线的距离为,若曲线上的点到直线的最大距离为6,则,即,解得.点睛:求解与极坐标有关的问题的主要方法:(1)直接利用极坐标系求解,可与数形结合思想配合使用;(2)转化为直角坐标系,用直角坐标求解.使用后一种方法时,应注意若结果要求的是极坐标,还应将直角坐标化为极坐标.18、(1).(2)【解析】

利用复数代数形式的乘法运算化简,再由实部为0且虚部不为0求解;

求出,再由复数代数形式的加法运算化简,由实部大于0且虚部小于0联立不等式组求解.【详解】(1)由,得,又为纯虚数,所以,且,所以.(2),又复数对应的点在第四象限,所以,且,所以的取值范围是.本题考查复数代数形式的乘除运算,考查复数的基本概念,考查复数的代数表示法及其几何意义,属于中档题.19、(1);(2);(3)是.【解析】

(1)记事件为“选取的且数据恰好是不相邻天的数据”,利用古典概型的概率公式计算出,再利用对立事件的概率公式可计算出;(2)计算、的值,再利用最小二乘法公式求出回归系数和的值,即可得出回归直线方程;(3)分别将和代入回归直线方程,计算出相应的误差,即可对所求的回归直线方程是否可靠进行判断.【详解】(1)设事件表示“选取的且数据恰好是不相邻天的数据”,则表示“选取的数据恰好是相邻天的数据”,基本事件总数为,事件包含的基本事件数为,,;(2)由题表中的数据可得,.,.,,因此,回归直线方程为;(3)由(2)知,当时,,误差为;当时,,误差为.因此,所求得的线性回归方程是可靠的.本题考查古典概型概率的计算,考查回归直线方程的求解与回归直线方程的应用,在求回归直线方程时,要熟悉最小二乘法公式的意义,考查运算求解能力,属于中等题.20、(1)略;(2)7【解析】

(1)根据组合数公式可证得左右两侧形式相同,从而可得结论;(2)将问题变为,将不等式左侧根据组合数运算性质可求得等于,从而可将不等式变为,根据为正整数求得结果.【详解】(1)当时,(2),即:又,即又为正整数,即正整数的最大值为:本题考查利用组合数公式及其性质进行运算或证明,考查对于公式的掌握程度,考查学生的转化能力,属于中档题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论