




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市戏剧学院附属中学2024-2025学年数学高二第二学期期末学业水平测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如果根据是否爱吃零食与性别的列联表得到,所以判断是否爱吃零食与性别有关,那么这种判断犯错的可能性不超过()注:0.1000.0500.0250.0100.001k2.7063.8415.0246.63510.828A.2.5% B.0.5% C.1% D.0.1%2.已知是定义在上的可导函数,的图象如下图所示,则的单调减区间是()A. B. C. D.3.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8 B.0.75 C.0.6 D.0.454.被称为宋元数学四大家的南宋数学家秦九韶在《数书九章》一书中记载了求解三角形面积的公式,如图是利用该公式设计的程序框图,则输出的的值为()A.4 B.5 C.6 D.75.已知定义在上的函数的导函数为,满足,且,则不等式的解集为()A. B. C. D.6.一个单位有职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本.则从上述各层中依次抽取的人数分别是()A.12,24,15,9 B.9,12,12,7 C.8,15,12,5 D.8,16,10,67.若函数在上是增函数,则的取值范围为()A. B. C. D.8.10名运动员中有2名老队员和8名新队员,现从中选3人参加团体比赛,要求老队员至多1人入选且新队员甲不能入选的选法有()A.77种 B.144种 C.35种 D.72种9.如图是在北京召开的第24届国际数学家大会的会标,会标是根据我国古代数学家赵爽弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客.已知图中直角三角形两个直角边的长分别为2和1.若从图中任选一点,则该点恰在阴影区域的概率为()A. B. C. D.10.函数在上的最大值为()A. B. C. D.11.在用数学归纳法证明:“凸多边形内角和为”时,第一步验证的等于()A.1 B.3 C.5 D.712.命题“”的否定为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知三棱锥的所有顶点都在球的表面上,平面,,,,,则球的表面积为__________.14.已知集合,,则__________.15.函数,的最大值是___.16.把6个学生分配到3个班去,每班2人,其中甲必须分到一班,乙和丙不能分到三班,不同的分法共有__________种.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,.(1)若函数与的图像上存在关于原点对称的点,求实数的取值范围;(2)设,已知在上存在两个极值点,且,求证:(其中为自然对数的底数).18.(12分)已知复数为虚数单位.(1)若复数对应的点在第四象限,求实数的取值范围;(2)若,求的共轭复数.19.(12分)如图,已知海岛与海岸公路的距离为,,间的距离为,从到,需先乘船至海岸公路上的登陆点,船速为,再乘汽车至,车速为,设.(1)用表示从海岛到所用的时间,并指明的取值范围;(2)登陆点应选在何处,能使从到所用的时间最少?20.(12分)将下列参数方程化为普通方程:(1)(为参数);(2)(为参数).21.(12分)己知数列的首项均为1,各项均为正数,对任意的不小于2的正整数n,总有,成立,(1)求数列的通项公式;(2)设数列的前n项和分别为,求所有使得等式成立的正整数m,的值.22.(10分)已知函数,.(1)若函数的图象与直线相切,求实数的值;(2)设函数在区间内有两个极值点.(ⅰ)求实数的取值范围;(ⅱ)若恒成立,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
根据得到,得到答案.【详解】,故,故判断“是否爱吃零食与性别有关”出错的可能性不超过2.5%.故选:.本题考查了独立性检验问题,意在考查学生的理解能力和应用能力.2、B【解析】分析:先根据图像求出,即得,也即得结果.详解:因为当时,,所以当时,,所以的单调减区间是,选B.点睛:函数单调性问题,往往转化为导函数符号是否变号或怎样变号问题,经常转化为解方程或不等式.3、A【解析】
试题分析:记“一天的空气质量为优良”,“第二天空气质量也为优良”,由题意可知,所以,故选A.考点:条件概率.4、B【解析】
模拟程序运行,依次计算可得所求结果【详解】当,,时,,;当,,时,,;当,,时,,;当,,时,,;故选B本题考查程序运算的结果,考查运算能力,需注意所在位置5、A【解析】分析:先构造函数,再根据函数单调性解不等式.详解:令,因为,所以因此解集为,选A.点睛:利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造.构造辅助函数常根据导数法则进行:如构造,构造,构造,构造等6、D【解析】试题分析:由题意,得抽样比为,所以高级职称抽取的人数为,中级职称抽取的人数为,初级职称抽取的人数为,其余人员抽取的人数为,所以各层中依次抽取的人数分别是8人,16人,10人,6人,故选D.考点:分层抽样.【方法点睛】分层抽样满足“”,即“或”,据此在已知每层间的个体数量或数量比,样本容量,总体数量中的两个时,就可以求出第三个.7、D【解析】
在上为增函数,可以得到是为增函数,时是增函数,并且时,,利用关于的三个不等式求解出的取值范围.【详解】由题意,在上为增函数,则,解得,所以的取值范围为.故选:D本题主要考查分段函数的单调性以及指数函数和一次函数的单调性,考查学生的理解分析能力,属于基础题.8、A【解析】
根据所选3名队员中包含老队员的人数分成两类:(1)只选一名老队员;(2)没有选老队员,分类计数再相加可得.【详解】按照老队员的人数分两类:(1)只选一名老队员,则新队员选2名(不含甲)有42;(2)没有选老队员,则选3名新队员(不含甲)有,所以老队员至多1人入选且新队员甲不能入选的选法有:种.故选A.本题考查了分类计数原理,属基础题.9、C【解析】
直接根据几何概型计算得到答案.【详解】,,故.故选:.本题考查了几何概型,意在考查学生的计算能力.10、A【解析】
对函数求导,利用导数分析函数的单调性,求出极值,再结合端点函数值得出函数的最大值.【详解】,,令,由于,得.当时,;当时,.因此,函数在处取得最小值,在或处取得最大值,,,因此,,故选A.本题考查利用导数求解函数的最值,一般而言,利用导数求函数在闭区间上的最值的基本步骤如下:(1)求导,利用导数分析函数在闭区间上的单调性;(2)求出函数的极值;(3)将函数的极值与端点函数值比较大小,可得出函数的最大值和最小值.11、B【解析】
多边形的边数最少是,即三角形,即可得解;【详解】解:依题意,因为多边形的边数最少是,即三角形,用数学归纳法证明:“凸多边形内角和为”时,第一步验证的等于时,是否成立,故选:本题主要考查数学归纳法的基本原理,属于简单题.用数学归纳法证明结论成立时,需要验证时成立,然后假设假设时命题成立,证明时命题也成立即可,对于第一步,要确定,其实就是确定是结论成立的最小的.12、C【解析】
利用全称命题的否定是特称命题写出结果即可.【详解】解:因为全称命题的否定是特称命题,所以,命题:“,”的否定为,故选:C.本题考查命题的否定,特称命题与全称命题的否定关系,是基本知识的考查.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分析:根据三棱锥的结构特征,求得三棱锥外接球半径,由球表面积公式即可求得表面积。详解:由,根据同角三角函数关系式得,解得所以,因为,,由余弦定理代入得所以△ABC为等腰三角形,且,由正弦定理得△ABC外接圆半径R为,解得设△ABC外心为,,过作则在中在中解得所以外接球面积为点睛:本题综合考查了空间几何体外接球半径的求法,通过建立空间模型,利用勾股定理求得半径;结合球的表面积求值,对空间想象能力要求高,综合性强,属于难题。14、【解析】
根据集合的交集补集运算即可求解.【详解】因为,所以因此.故答案为:本题主要考查了集合的补集,交集运算,属于中档题.15、【解析】
求导数,根据导数的正负判断函数单调性,求得最大值.【详解】函数时:函数单调递减故答案为本题考查了利用导函数求单调性,再求最大值,意在考查学生的计算能力.16、1【解析】
根据题意,分3步分析:①、让甲分到一班,②、再从除了甲、乙、丙之外的3个人种任意选出2个人,分到三班,③、最后再把剩下的3个人选出2个人分到二班,剩余的一个分到一班,由分步计数原理计算可得答案.【详解】根据题意,分3步分析:①、让甲分到一班,只有1种方法;②、再从除了甲、乙、丙之外的3个人种任意选出2个人,分到三班,有C32=3种安排方法;③、最后再把剩下的3个人选出2个人分到二班,剩余的一个分到一班,有C32=3种安排方法;则不同的分法有1×3×3=1种;故答案为:1.本题考查分步计数原理的应用,关键是对于有限制的元素要优先排,特殊位置要优先排.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)见证明【解析】
(1)将问题转化为在有解,即在上有解,通过求解的最小值得到;(2)通过极值点为可求得,通过构造函数的方式可得:;通过求证可证得,进而可证得结论.【详解】(1)函数与的图像上存在关于原点对称的点即的图像与函数的图像有交点即在有解,即在上有解设,,则当时,为减函数;当时,为增函数,即(2),在上存在两个极值点,且且,即设,则要证,即证只需证明,即证明设,则则在上单调递增,即本题考查利用导数来解决函数中的交点问题、恒成立问题,解决问题的关键是能将交点问题转变为能成立问题、不等式的证明问题转化为恒成立的问题,从而通过构造函数的方式,找到合适的函数模型来通过最值解决问题.18、(1);(2)【解析】试题分析:(1)求出复数的代数形式,根据第四象限的点的特征,求出的范围;(2)由已知得出,代入的值,求出.试题解析;(I)=,由题意得解得(2)19、(1),.(2)登陆点与的距离为时,从海岛到的时间最少.【解析】
求出AD,CD,从而可得出的解析式;
利用导数判断函数单调性,根据单调性得出最小值对应的夹角.【详解】(1)在中,∵,,∴,,∴,∴,即.∵,∴,∴(若写成开区间不扣分).(2),,当时,,当时,,所以时,取最小值,即从海岛到的时间最少,此时.答:(1),.(2)登陆点与的距离为时,从海岛到的时间最少.本题考查了解三角形的应用和正弦定理的应用,考查了利用导数求函数最值,属中档题.20、(1);(2).【解析】试题分析:(1)分别分离处参数中的,根据同角三角函数的基本关系式,即可消去参数得到普通方程;(2)由参数方程中求出,代入整理即可得到其普通方程.试题解析:(1)∵,∴,两边平方相加,得,即.(2)∵,∴由代入,得,∴.考点:曲线的参数方程与普通方程的互化.21、(1),;(2),.【解析】
(1)通过因式分解可判断为等差数列,于是可得通项,通过等比中项性质可知为等比数列,于是可求通项;(2)计算出前n项和,化简式子,通过分解因式找出因子,然后利用正整数解可求得,.【详解】(1)由于,整理得,而,故,所以为等差数列,所以;由于,可知为等比数列,,所以;(2)由(1)可得,,所以转化为,整理即,要m,都为正整数,则都分别是2的倍数,且,故2的幂指数中,只有4与16相差12,故,故,此时.本题主要考查等差数列与等比数列的通项公式,前n项和的计算,意在考查学生的转化能力,分析能力,计算能力,难度中等.22、(1).(2)(ⅰ);(ⅱ)【解析】
求导并设出切点,建立方程组,解出即可;
(ⅰ)求导得,令,则函数在上有两个零点,,由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年护士执业资格考试题及答案
- 内蒙古自治区乌兰察布市集宁区第二中学2024-2025学年高一下学期4月月考 数学试题(含解析)
- 本溪初二语文考试题目及答案
- 招生直播测试题及答案
- 网络管理软件应用分析试题及答案
- 计算机三级软件测试在公共政策评估中的作用试题及答案
- 软考网络工程师常见考题预测试题及答案
- 西方政治考试的难点与突破口试题及答案
- 如何规划信息系统项目管理师的复习时间试题及答案
- 公共政策在生态保护中的重要性试题及答案
- 2025年生态环境保护知识测试题及答案
- 道路监控系统培训课件
- 2025年湖北省新高考信息卷(三)物理试题及答题
- 2025-2030年力控玩具项目投资价值分析报告
- 基于学校区域文化优势背景下的小学水墨画教学研究
- 设备欠款协议书范本
- 机柜租赁合同协议
- 2025年2月22日四川省公务员面试真题及答案解析(行政执法岗)
- 造价项目时效管理制度
- 腹腔镜手术术后腹胀护理
- 泥水平衡-沉井-顶管及沉井施工方案
评论
0/150
提交评论