重庆铜梁县第一中学2025年数学高二下期末质量跟踪监视模拟试题含解析_第1页
重庆铜梁县第一中学2025年数学高二下期末质量跟踪监视模拟试题含解析_第2页
重庆铜梁县第一中学2025年数学高二下期末质量跟踪监视模拟试题含解析_第3页
重庆铜梁县第一中学2025年数学高二下期末质量跟踪监视模拟试题含解析_第4页
重庆铜梁县第一中学2025年数学高二下期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

重庆铜梁县第一中学2025年数学高二下期末质量跟踪监视模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知复数满足(为虚数单位),则共轭复数等于()A. B. C. D.2.某校有高一学生n名,其中男生数与女生数之比为6:5,为了解学生的视力情况,现要求按分层抽样的方法抽取一个样本容量为n10的样本,若样本中男生比女生多12人,则n=(A.990 B.1320 C.1430 D.15603.已知函数,若函数有3个零点,则实数的取值范围为()A. B. C. D.4.一个几何体的三视图如图所示,其体积为()A. B. C. D.5.已知函数的图像关于点对称,曲线在点处的切线过点,设曲线在处的切线的倾斜角为,则的值为()A. B. C. D.6.若抛物线上一点到焦点的距离是该点到轴距离的倍,则()A. B. C. D.7.图1和图2中所有的正方形都全等,将图1中的正方形放在图2中的①②③④某一位置,所组成的图形能围成正方体的概率是()A.14 B.C.34 D.8.若的展开式中的第五、六项二项式系数最大,则该展开式中常数项为()A. B.84 C. D.369.随机变量服从正态分布,则的最小值为()A. B. C. D.10.复数满足,则()A. B. C. D.11.若函数的导函数的图像关于轴对称,则的解析式可能为A. B. C. D.12.某校为了解本校高三学生学习的心理状态,采用系统抽样方法从人中抽取人参加某种测试,为此将他们随机编号为,分组后在第一组采用简单随机抽样的方法抽到的号码为,抽到的人中,编号落在区间的人做试卷,编号落在的人做试卷,其余的人做试卷,则做试卷的人数为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若,,且,则的最小值为__________.14.已知函数f(x)=axlnx+b(a,b∈R),若f(x)的图象在x=1处的切线方程为2x-y=0,则a+b=________.15.若曲线经过T变换作用后纵坐标不变、横坐标变为原来的2倍,则T变换所对应的矩阵_____.16.已知为虚数单位,则复数_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)近日,某地普降暴雨,当地一大型提坝发生了渗水现象,当发现时已有的坝面渗水,经测算,坝而每平方米发生渗水现象的直接经济损失约为元,且渗水面积以每天的速度扩散.当地有关部门在发现的同时立即组织人员抢修渗水坝面,假定每位抢修人员平均每天可抢修渗水面积,该部门需支出服装补贴费为每人元,劳务费及耗材费为每人每天元.若安排名人员参与抢修,需要天完成抢修工作.写出关于的函数关系式;应安排多少名人员参与抢修,才能使总损失最小.(总损失=因渗水造成的直接损失+部门的各项支出费用)18.(12分)已知椭圆:的离心率为,且经过点.(1)求椭圆的方程;(2)直线与椭圆相交于,两点,若,求(为坐标原点)面积的最大值及此时直线的方程.19.(12分)已知函数.(1)解不等式;(2)若正数,满足,求的最小值.20.(12分)甲、乙两人各射击一次,击中目标的概率分别是和.假设两人射击是否击中目标相互之间没有影响;每人各次射击是否击中目标,相互之间也没有影响.(1)求甲射击4次,至少有1次未击中目标的概率;(2)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率.21.(12分)某快递公司(为企业服务)准备在两种员工付酬方式中选择一种现邀请甲、乙两人试行10天两种方案如下:甲无保底工资送出50件以内(含50件)每件支付3元,超出50件的部分每件支付5元;乙每天保底工资50元,且每送出一件再支付2元分别记录其10天的件数得到如图茎叶图,若将频率视作概率,回答以下问题:(1)记甲的日工资额为(单位:元),求的分布列和数学期望;(2)如果仅从日工资额的角度考虑请利用所学的统计学知识为快递公司在两种付酬方式中作出选择,并说明理由.22.(10分)已知f(x)=12sin(1)求fx(2)CD为△ABC的内角平分线,已知AC=f(x)max,BC=f(x)min

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】试题分析:由题意得考点:复数运算2、B【解析】

根据题意得出样本中男生和女生所占的比例分别为611和511,于是得出样本中男生与女生人数之差为611【详解】依题意可得(611-511)×n本题考考查分层抽样的相关计算,解题时要利用分层抽样的特点列式求解,考查计算能力,属于基础题。3、C【解析】

求导计算处导数,画出函数和的图像,根据图像得到答案.【详解】当时,,则,;当时,,则,当时,;画出和函数图像,如图所示:函数有3个交点,根据图像知.故选:.本题考查了根据函数零点个数求参数,意在考查学生的计算能力和应用能力,画出函数图像是解题的关键.4、C【解析】

由三视图还原原几何体,可知该几何体是直三棱柱剪去一个角,其中为等腰直角三角形,,再由棱锥体积剪去棱锥体积求解.【详解】解:由三视图还原原几何体如图,

该几何体是直三棱柱剪去一个角,其中为等腰直角三角形,,

∴该几何体的体积,

故选:C.本题考查由三视图求体积,关键是由三视图还原几何体,是中档题.5、C【解析】

由题意可得对任意恒成立,可得,,根据导数的几何意义可得在点处切线的斜率,进而可求出在点处切线的方程,将点代入切线的方程即可求出,进而可求出,再利用诱导公式及同角三角函数关系,即可到答案.【详解】因为函数的图像关于点对称,所以对任意恒成立,即对任意恒成立,即对任意恒成立,所以,,所以,所以,所以函数在处的切线的斜率,又,所以切线的方程为,又切线过点,所以,解得,所以函数在处的切线的斜率,所以,所以,所以.故选:C.本题考查函数的对称中心方程应用,导数的几何意义及在一点处的切线的方程,同时考查诱导公式和同角基本关系,属于中档题.6、D【解析】

利用抛物线的定义列等式可求出的值.【详解】抛物线的准线方程为,由抛物线的定义知,抛物线上一点到焦点的距离为,,解得,故选:D.本题考查抛物线的定义,在求解抛物线上的点到焦点的距离,通常将其转化为该点到抛物线准线的距离求解,考查运算求解能力,属于中等题.7、C【解析】分析:将图1的正方形放在图2中①的位置出现重叠的面,不能围成正方体,再根据概率公式求解可得.详解:由图共有4种等可能结果,其中将图1的正方形放在图2中①的位置出现重叠的面,不能围成正方体,则所组成的图形能围成正方体的概率是34故选:C.点睛:本题考查了概率公式和展开图折叠成几何体,解题时勿忘记四棱柱的特征及正方体展开图的各种情形,注意:只要有“田”字格的展开图都不是正方体的表面展开图.8、B【解析】

先由的展开式中的第五、六项二项式系数最大,求解n,写出通项公式,令,求出r代入,即得解.【详解】由于的展开式中的第五、六项二项式系数最大,故,二项式的通项公式为:令可得:故选:B本题考查了二项式定理的应用,考查了学生概念理解,转化划归,数学运算的能力,属于中档题.9、D【解析】

利用正态密度曲线的对称性得出,再将代数式与相乘,展开后可利用基本不等式求出的最小值.【详解】由于,由正态密度曲线的对称性可知,,所以,,即,,由基本不等式可得,当且仅当,即当时,等号成立,因此,的最小值为,故选D.本题考查正态密度概率以及利用基本不等式求最值,解题关键在于利用正态密度曲线的对称性得出定值,以及对所求代数式进行配凑,以便利用基本不等式求最值,考查计算能力,属于中等题.10、C【解析】

利用复数的四则运算可得,再利用复数的除法与减法法则可求出复数.【详解】,,故选C.本题考查复数的四则运算,考查复数的求解,考查计算能力,属于基础题.11、C【解析】

依次对选项求导,再判断导数的奇偶性即可得到答案。【详解】对于A,由可得,则为奇函数,关于原点对称;故A不满足题意;对于B,由可得,则,所以为非奇非偶函数,不关于轴对称,故B不满足题意;对于C,由可得,则为偶函数,关于轴对称,故C满足题意,正确;对于D,由可得,则,所以为非奇非偶函数,不关于轴对称,故D不满足题意;故答案选C本题主要考查导数的求法,奇偶函数的判定,属于基础题。12、B【解析】,由题意可得抽到的号码构成以为首项,以为公差的等差数列,且此等差数列的通项公式为,落入区间的人做问卷,由,即,解得,再由为正整数可得,做问卷的人数为,故选B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分析:由对数运算和换底公式,求得的关系为,根据基本不等式确定详解:因为,所以,所以,即所以当且仅当,即,此时时取等号所以最小值为点睛:本题考查了对数的运算和对数换底公式的综合应用,根据“1”的代换联系基本不等式求最值,综合性强,属于中档题.14、4【解析】,由的图像在处的切线方程为,易知,即,,即,则,故答案为4.15、【解析】

根据伸缩变换性质即可得出【详解】设在这个伸缩变换下,直角坐标系内任意一点对应到点则从而对应的二阶矩阵本题主要考查了伸缩变换对应矩阵,属于基础题.16、【解析】

由复数乘法法则即可计算出结果【详解】.本题考查了复数的乘法计算,只需按照计算法则即可得到结果,较为简单三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)应安排名民工参与抢修,才能使总损失最小【解析】

(1)由题意得要抢修完成必须使得抢修的面积等于渗水的面积,即可得,所以;(2)损失包=渗水直接经济损失+抢修服装补贴费+劳务费耗材费,即可得到函数解析式,再利用基本不等式,即可得到结果.【详解】由题意,可得,所以.设总损失为元,则当且仅当,即时,等号成立,所以应安排名民工参与抢修,才能使总损失最小.本题主要考查了函数的实际应用问题,以及基本不等式求最值的应用,其中解答中认真审题是关键,以及合理运用函数与不等式方程思想的有机结合,及基本不等式的应用是解答的关键,属于中档题,着重考查了分析问题和解答问题的能力.18、(1);(2)的最大值为,【解析】

(1)根据椭圆的离心率和经过的点,以及列方程组,解方程组求得的值,进而求得椭圆方程.(2)设出直线的方程,联立直线的方程和椭圆的方程,写出韦达定理,根据列方程,得到的关系式.求出面积的表达式,利用配方法求得面积的最大值,进而求得直线的方程.【详解】(1)由题意解得故椭圆的方程为.(2)因为,若直线斜率不存在,则直线过原点,,,不能构成三角形,所以直线的斜率一定存在,设直线的方程为,设,,由,得,所以,.因为,所以,即,得,显然,所以.又,得,点到直线的距离.因为面积,所以,所以当时,有最大值8,即的最大值为,此时,所以直线的方程为.本小题主要考查椭圆方程的求法,考查直线和椭圆的位置关系,考查根与系数关系的应用,考查三角形面积的最值的求法,属于中档题.19、(1);(2).【解析】

(1)去绝对值,根据分段函数的解析式即可求出不等式的解集;(2)由题意得,再根据基本不等式即可求出.【详解】(1)因为所以①当时,由,解得②当时,由,解得又,所以③当时,不满足,此时不等式无解综上,不等式的解集为(2)由题意得所以=当且仅当时等号成立,所以的最小值为.本题考查解绝对值不等式和利用基本不等式的简单证明,注意利用基本不等式证明时要强调等号成立的条件!20、(1)(2)【解析】

(1)记“甲连续射击4次至少有1次未击中目标”为事件A1.由题意,射击4次,相当于作4次独立重复试验.故P(A1)=所以甲连续射击4次至少有一次未击中目标的概率为.(2)记“甲射击4次,恰有2次击中目标”为事件A2,“乙射击4次,恰有3次击中目标”为事件B2,则P(A2)=,P(B2)=由于甲、乙射击相互独立,故P(A2B2)=所以两人各射击4次,甲恰有2次击中目标且乙恰有3次击中目标的概率为.21、(1)分布列详见解析,数学期望为151.5元;(2)推荐该公司选择乙的方案,理由详见解析.【解析】

(1)首先根据茎叶图得到的所有可能取值为:,,,,,并计算其概率,再列出分布列求数学期望即可.(2)根据题意求出乙的日均工资额,再比较甲乙的日工资额即可.【详解】(1)设甲日送件量为,则当时,,当时,,当时,,当时,,当时,,所以的所有可能取值为:,,,,.,,,,.的分布列为(元).(2)乙的日均送件量为:乙的日均工资额为:(元),而甲的日均工资额为:元,元元,因此,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论