函数单调性教学设计_第1页
函数单调性教学设计_第2页
函数单调性教学设计_第3页
函数单调性教学设计_第4页
函数单调性教学设计_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

“函数单调性”教学设计“函数单调性”系人教版高中一年级数学上册第63页至64页内容。该部分包括函数的单调性的定义与判断及其证明。在初中学习函数时,借助图像的直观性研究了一些函数的增减性.这节内容是在原来知识点的升华,延伸,与进一步学习简单的初等函数的基本性质埋下伏笔,且在解决函数值域、定义域、不等式、比较两数大小等具体问题中均需用到函数的单调性;同时在这一节中利用函数图象来研究函数性质的数形结合思想将贯穿于我们整个高中数学教学。(一)学情分析1.有利因素:结合学生的年龄而言,12~18岁的青少年在认知上逐渐有了独立的思考的思维能力,在以前的学习基础上,他们可以分析归纳总结出相应的变化规律,得到大致相近的结果,为进一步学习做好铺垫。2.不利因素:本节内容的思维难度比较大,对思维的严密性和分类讨论,归纳推理及逻辑的严谨性和分类论,归纳推理及逻辑的严密性有较高要求。学生在应用部分会有一定难度。(二)数学目标1.知识与技能目标:(1)理解函数单调性的实质,即本质是有自变量的变化情况来说明函数值的情况。具体言之是函数随自变量的增大而增大时为增函数,函数随自变量的增大而减小时为减函数。(2)掌握函数单调性的定义,准确理解定义中“在定义域内的区间”,“任意”和“都”的本质意义。(3)应用函数单调性的定义,证明函数的单调性,并掌握其证明过程的思路,即设值,作差,复形,定号,结论。2.数学思考目标:(1)从已知的知识水平复化的基础上对函数单调性的实质进行引入和分析。(2)学生独立思考,动手操作,画出,和的大致图像。(3)主动探索这些图像中函数与自变量的变化关系。(4)师生合作,用数学语言归纳总结出函数单调性的实质,并给出准确的定义,提炼出用定义证明函数单调性的步骤。3.问题解决目标:(1)提高学生自主探索,独立思考和归纳总结的能力。(2)提升学生的学习领域,掌握用简单的代数思想证明单调性。(3)精确应用函数单调性解答实际问题。(4)发展学生的数学应用意识。4.情感态度与价值观目标:提高学生的推理能力和几何直观,把生硬的知识灵活化,对平日语言表达中的“越来越**”进行简单的数学建模,让他们感受到生活中数学无处不在的奇妙,提升对数学的学习热情,体观其乐趣。(三)教学重点与难点1.教学重点:准确掌握函数单调性的定义。2.教学难点:利用定义证明函数的单调性,即正确分析“定义域内的区间”,“任意”,“都”并提炼出具体解题思路并应用。(四)教学方法在学生动手操作,自主探索和合作交流的前提下进行讲授。(五)教学时间一课时(六)教学过程1.生活套话(3分钟)教学内容:在实际生活中,我们经常听到别人对自己的评价:“好久不见,你怎么越来越高(乖巧,懂事)等等,当你们听到这样的评价肯定会有小小的高兴,但不知这句话的重点是什么?你们想过没有,你们越来越高(乖巧,懂事)中什么发生了变化,什么又随着什么发生了变化呢?好!现在通过对这句话的理解建立简单的数学模型。设计意图:通过生活中的常用语来拉近数学与学生的亲切度,激发学生的求知欲,学生在老师的带领下思考,引发其学习兴趣,建立简单的数学模型,体现数学在生活中无处不在。2.动手操作(4分钟)教学内容:随机抽出3位同学上台按先后顺序画出,与的图像,其他同学在草稿纸上分别画出这三个函数的大致图像。设计意图:教师指导学生操作,学生动手进行知识回顾思考,在已有的知识上进一步升华,前后贯穿,品味这节课要讲授的内容是什么,这三个完全不一样的函数图象在这节课中体现了什么。3.观察总结(7分钟)教学内容:教师先判断学生所做图形的正确性,并纠正错误,最后和学生一起探索这三个函数关系中函数随自变量的变化情况,并总结归纳:函数的定义域为R,其中随的增大而增大。函数的定义域为R,其中在区间,随的增大而减小,在区间,随的增大而增大,但在任何含有x=0的区间内,随的变化无明确的规律。函数的定义域为,函数在区间上随的增加而减少,在区间,随的增加而减少。分析得到函数在和区间上随的增加而减小,但不能说成在区间随的增加而减少,注意区分“和”的实质。设计意图:找出函数随自变量的变化规律,将所有讲解的知识在学生大脑中形成,便于学生接受新的知识,为进一步学生学习,理解做铺垫。4.盘中之物(3分钟)教学内容:函数单调性的定义。一般地设的定义域为I,区间AI,如果对子区间A内的任意两个值,,当<时,都有(或),那么就说在这个区间上是单调增函数(减函数),其中A为单调增区间(或减区间)。设计意图:让观察总结得到的结论得到升华,教师组织学生,共同掌握单调函数的定义。5.挖掘精髓(5分钟)教学内容:加深对定义的理解,提出其定义中的实质。定义域内的区间中,判断函数单调性是在其定义域内区间而言。自变量取值的任意性:函数的单调性不是特定的两个值或有限个值来判断的,而是任意的,无限个自变量的变化来判断的。函数值的大小判断都是同一个结果“都”,单调区间内任何两函数值大小无一例外。设计意图:让学生准确理解定义,挖掘出定义中的实际性要点,便于记忆,判断与应用。6.精品讲解(8分钟)教学内容:使用函数单调性的定义证明函数在上为增函数。证明:的定义域为,其中在定义域内,取任意的,不妨假设<,则:即对任意两个值,时,当<时,都有,则在上是单调增函数。学生在此基础上,假设>,比较的大小并验证其结论。设计意图:巩固加深函数单调性的定义,培养学生解决问题和数学探索能力。7.归纳总结(5分钟)教学内容:对所讲例题中用函数单调性的定义证明的单调性进行归纳总结,提出解决思路。设元→作差→变形→定号→结论。设计意图:使学生对所学知识有一定的知识结构,总结出解题思路,排除实际中的杂乱和疑惑,为进一步探索做好铺垫。8.决战到底(10分钟)教学内容:使用函数定义判断的单调性。分别对任意的区间(1)(2)(3)这3种情况讨论,判断给出结论。设计意图:在本课学习中做到前后呼应,学生学会思考问题,验证学习过程中遇到的疑惑,给他们自己最有说服力的演示,铭记具体解题思路和严谨的思维方式。9.课后练习完成课后练习,书上P65页的1.2.3.题。设计意图:加深对知识的理解应用。(七)教学流程图做时间和高度的图像,建立生活数学模型做时间和高度的图像,建立生活数学模型生活套语越来越高生活套语越来越高学生甲画出学生甲画出的图像动手操作动手操作学生乙画出学生乙画出的图像学生丙画出学生丙画出的图像图像图像中随的变化情况观察总结图像中图像中随的变化情况图像中图像中随的变化情况盘中之物盘中之物函数单调性的定义定义域内的子集定义域内的子集挖掘精髓函数值的大小关系都函数值的大小关系都学生重新假设后再证。学生重新假设后再证。函数单调性

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论