




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
重庆市普通高中2024-2025学年高二下数学期末考试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.等差数列{an}的公差是2,若a2,a4A.n(n+1) B.n(n-1) C.n(n+1)2 D.2.已知两个不同的平面α,β和两条不同的直线a,b满足a⊄α,b⊄β,则“a∥b”是“α∥β”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.袋中共有10个除了颜色外完全相同的球,其中有6个白球,4个红球,从袋中任取2个球,则所取的2个球中恰有1个白球,1个红球的概率为()A. B. C. D.4.给出一个命题p:若,且,则a,b,c,d中至少有一个小于零,在用反证法证明p时,应该假设()A.a,b,c,d中至少有一个正数 B.a,b,c,d全为正数C.a,b,c,d全都大于或等于0 D.a,b,c,d中至多有一个负数5.已知复数,则的虚部是()A. B. C. D.6.设,则二项式展开式的所有项系数和为()A.1 B.32 C.243 D.10247.已知随机变量服从正态分布,且,则()A.-2 B.2 C.4 D.68.复数的实部与虚部之差为()A.-1 B.1C. D.9.在下列命题中,①从分别标有1,2,……,9的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到的2张卡片上的数奇偶性不同的概率是;②的展开式中的常数项为2;③设随机变量,若,则.其中所有正确命题的序号是()A.② B.①③C.②③ D.①②③10.已知函数在上恒不大于0,则的最大值为()A. B. C.0 D.111.某中学元旦晚会共由6个节目组成,演出顺序有如下要求:节目甲必须排在乙的前面,丙不能排在最后一位,该晚会节目演出顺序的编排方案共有()A.720种 B.600种 C.360种 D.300种12.命题“”为真命题的一个充分不必要条件是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.用0到9这10个数字,组成没有重复数字且能被5整除的三位数的个数为__________.14.用五种不同的颜色给图中、、、、、六个区域涂色,要求有公共边的区域不能涂同一种颜色且颜色齐全,则共有涂色方法__________种.15.在平面直角坐标系xOy中,动点到两坐标轴的距离之和等于它到定点的距离,记点P的轨迹为,给出下列四个结论:①关于原点对称;②关于直线对称;③直线与有无数个公共点;④在第一象限内,与x轴和y轴所围成的封闭图形的面积小于.其中正确的结论是________.(写出所有正确结论的序号)16.已知向量满足,,的夹角为,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)讨论的单调性;(2)当时,若恒成立,求的取值范围.18.(12分)已知二项式,其展开式中各项系数和为.若抛物线方程为,过点且倾斜角为的直线与抛物线交于两点.(1)求展开式中最大的二项式系数(用数字作答).(2)求线段的长度.19.(12分)已知a、b、c都是正实数,且ab+bc+ca=1求证:20.(12分)已知函数.(Ⅰ)当时,解不等式;(Ⅱ)若,对任意都有恒成立,求实数的取值范围.21.(12分)已知函数.(1)当时,求函数在点处的切线方程;(2)若函数有两个不同极值点,求实数的取值范围;(3)当时,求证:对任意,恒成立.22.(10分)在极坐标系中,直线,为直线上一点,且点在极轴上方以为一边作正三角形(逆时针方向),且面积为.(1)求点Q的极坐标;(2)写出外接圆的圆心的极坐标,并求外接圆与极轴的相交弦长.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】试题分析:由已知得,a42=a2⋅a8,又因为{an}【考点】1、等差数列通项公式;2、等比中项;3、等差数列前n项和.2、D【解析】
分别判断充分性和必要性得到答案.【详解】如图所示:既不充分也不必要条件.故答案选D本题考查了充分必要条件,举出反例可以简化运算.3、C【解析】
从袋中任取2个球,基本事件总数n.所取的2个球中恰有1个白球,1个红球包含的基本事件个数m,利用古典概型公式可得所求.【详解】袋中共有10个除了颜色外完全相同的球,其中有6个白球,4个红球,从袋中任取2个球,基本事件总数n1.所取的2个球中恰有1个白球,1个红球包含的基本事件个数m24,∴所取的2个球中恰有1个白球,1个红球的概率为p.故选C.本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.4、C【解析】
由“中至少一个小于零”的否定为“全都大于等于”即可求解.【详解】因为“a,b,c,d中至少有一个小于零”的否定为“全都大于等于”,
所以由用反证法证明数学命题的方法可得,应假设“全都大于等于”,
故选:C.本题主要考查了反证法,反证法的证明步骤,属于容易题.5、B【解析】
将利用复数代数形式的乘除运算化简即可得到答案.【详解】由题意,,所以的虚部是.故选:B本题主要考查复数的基本概念和复数代数形式的乘除运算,属于基础题.6、C【解析】
根据定积分求得,得出二项式,再令,即可求得展开式的所有项的系数和,得到答案.【详解】由题意,可得,所以二项式为,令,可得二项式展开式的所有项系数和为,故选C.本题主要考查了微积分基本定理的应用,以及二项展开式的系数问题,其中解答中熟记定积分的计算,以及二项式的系数的求解方法是解答的关键,着重考查了推理与运算能力,属于基础题.7、D【解析】分析:由题意知随机变量符合正态分布,又知正态曲线关于对称,得到两个概率相等的区间关于对称,得到关于的方程,解方程求得详解:由题随机变量服从正态分布,且,则与关于对称,则故选D.点睛:本题主要考查正态分布曲线的特点及曲线所表示的意义、函数图象对称性的应用等基础知识,属于基础题.8、B【解析】试题分析:,故选B.考点:复数的运算.9、C【解析】
根据二项式定理,古典概型,以及正态分布的概率计算,对选项进行逐一判断,即可判断.【详解】对①:从9张卡片中不放回地随机抽取2次,共有种可能;满足2张卡片上的数奇偶性不同,共有种可能;根据古典概型的概率计算公式可得,其概率为,故①错误;对②:对写出通项公式可得,令,解得,即可得常数项为,故②正确;对③:由正态分布的特点可知,故③正确.综上所述,正确的有②③.故选:C.本题考查古典概型的概率计算,二项式定理求常数项,以及正态分布的概率计算,属综合性基础题.10、A【解析】
先求得函数导数,当时,利用特殊值判断不符合题意.当时,根据的导函数求得的最大值,令这个最大值恒不大于零,化简后通过构造函数法,利用导数研究所构造函数的单调性和零点,并由此求得的取值范围,进而求得的最大值.【详解】,当时,,则在上单调递增,,所以不满足恒成立;当时,在上单调递增,在上单调递减,所以,又恒成立,即.设,则.因为在上单调递增,且,,所以存在唯一的实数,使得,当时,;当时,,所以,解得,又,所以,故整数的最大值为.故选A.本小题主要考查利用导数研究函数的单调性和最值,考查构造函数法,考查零点存在性定理,考查化归与转化的数学思想方法,属于中档题.11、D【解析】
根据题意,分2步进行分析:①,将除丙之外的5人排成一排,要求甲在乙的前面,②,5人排好后有5个空位可选,在其中任选1个,安排丙,由分步计数原理计算可得答案.【详解】解:根据题意,分2步进行分析:将除丙之外的5人排成一排,要求甲在乙的前面,有种情况,②5人排好后有5个空位可选,在其中任选1个,安排丙,有5种情况,则有60×5=300种不同的顺序,故选D.本题考查排列、组合的实际应用,涉及分步计数原理的应用,属于基础题.12、A【解析】
根据,成立,求得,再根据集合法,选其子集即可.【详解】因为,成立,所以,成立,所以,命题“”为真命题的一个充分不必要条件是.故选:A本题主要考查不等式恒成立及逻辑关系,还考查了运算求解的能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、136【解析】分析:由题意,末尾是0或1,分类讨论,即可得出结论.详解:由题意,末尾是0或1.
末尾是0时,没有重复数字且被1整除的三位数有,
末尾是1时,没有重复数字且被1整除的三位数有,
∴用0到9这10个数字,可以组成没有重复数字且被1整除的三位数有,即答案为136.点睛:本题考查计数原理的应用,考查学生的计算能力,比较基础.14、960【解析】分析:先分析出同色区域的情况,然后其他颜色任意排即可.详解:同色的区域可以为AC,AE,AF,BD,BF,CD,CE,DF,共8种,故共有涂色方法8种.故答案为960.点睛:考查排列组合的简单应用,认真审题,分析清楚情况是解题关键,属于中档题.15、②③④【解析】
由题意可得当xy≥0,可得xy+x+y﹣1=0,当xy<0时,﹣xy+x+y﹣1=0,画出P的轨迹图形,由图形可得不关于原点对称,关于直线y=x对称,且直线y=1与曲线有无数个公共点;曲线在第一象限与坐标轴围成的封闭图形的面积小于边长为1的等腰三角形的面积,即可得到正确结论个数.【详解】解:动点P(x,y)到两坐标轴的距离之和等于它到定点A(1,1)的距离,可得|x|+|y|,平方化为|xy|+x+y﹣1=0,当xy≥0,可得xy+x+y﹣1=0,即y,即y=﹣1,当xy<0时,﹣xy+x+y﹣1=0,即有(1﹣x)y=1﹣x.画出动点P的轨迹为图:①Γ关于原点对称,不正确;②Γ关于直线y=x对称,正确;③直线y=1与Γ有无数个公共点,正确;④在第一象限内,Γ与x轴和y轴所围成的封闭图形的面积小于,正确.故答案为:②③④.本题考查曲线的方程和图形,考查曲线的性质,画出图形是解题的关键,属于中档题.16、【解析】
先计算,再由展开计算即可得解.【详解】由,,的夹角为,得.所以.故答案为:.本题主要考查了利用向量的数量积计算向量的模长,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【解析】
(1)先求得函数的导函数,然后根据三种情况,讨论的单调性.(2)由题可知在上恒成立,构造函数,利用导数研究的单调性和最值,对分成两种进行分类讨论,根据在上恒成立,求得的取值范围.【详解】(1),当时,令,得,令,得或,所以在上单调递增,在上单调递减.当时,在上单调递增.当时,令,得,令,得或,所以在上单调递减,在上单调递增.(2)由题可知在上恒成立,令,则,令,则,所以在上为减函数,.当时,,即在上为减函数,则,所以,即,得.当时,令,若,则,所以,所以,又,所以在上有唯一零点,设为,在上,,即单调递增,在上,,即单调递减,则的最大值为,所以恒成立.由,得,则.因为,所以,由,得.记,则,所以在上是减函数,故.综上,的取值范围为.本小题主要考查利用导数研究函数的单调性,考查利用导数研究不等式恒成立问题,考查分类讨论的数学思想方法,考查化归与转化的数学思想方法,属于难题.18、(1)35(2)4【解析】分析:(1)当n为奇数时,二项式系数在时取最大,即在第4、5项取最大(2)各项系数和为,求,解,利用弦长公式求解。详解:(1)二项式系数分别为其中最大.最大为35(2)令,有抛物线方程为过抛物线的焦点且倾斜角为,则直线方程为,令联立:,,点睛:二项式系数最大项满足以下结论:当n为偶数时,二项式系数在时取最大,即在第项取最大。当n为奇数时,二项式系数在时取最大,即在第或项取最大。联立直线与椭圆方程根据韦达定理列出,的关系式,利用弦长公式。19、见解析【解析】
利用不等式证明.【详解】∵,∴,时取等号.又均为正数,∴本题考查用基本不等式证明不等式,解题关键是掌握基本不等式的推广形式:即.20、(Ⅰ)(−∞,−5)∪(1,+∞);(Ⅱ)(0,6]【解析】
(Ⅰ)由题知当a=−1时,不等式等价于|x+3|+|x+1|>6,根据绝对值的几何意义能求出不等式的解集.
(Ⅱ)由,对任意都有,只需f(x)的最小值大于等于的最大值即可,转化成函数最值问题建立不等关系式,由此能求出a的取值范围.【详解】(Ⅰ)∵函数,∴当a=−1时,不等式等价于|x+3|+|x+1|>6,根据绝对值的几何意义:|x+3|+|x+1|>6可以看作数轴上的点x到点−3和点−1的距离之和大于6,则点x到点−3和点−1的中点O的距离大于3即可,∴点x在−5或其左边及1或其右边,即x<−5或x>1.∴不等式的解集为(−∞,−5)∪(1,+∞).(Ⅱ)∵,对任意都有,只需f(x)的最小值大于等于的最大值即可.由可得,,设,根据二次函数性质,,∴,解得,又,∴∴a的取值范围是(0,6].本题考查绝对值三角不等式,绝对值不等式的解法:(1)数形结合:利用绝对值不等式的几何意义[即(x,0)到(a,0)与(b,0)的距离之和]求解.(2)分类讨论:利用“零点分段法”求解.(3)构造函数:利用函数的图像求解,体现了函数与方程的思想.本题属于中等题.21、(1)(2)(3)见解析【解析】
(1)当时,求导数,将切点横坐标带入导数得到斜率,再计算切线方程.(2)求导,取导数为0,参数分离得到,设右边为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 管理方式与管理制度
- 花茶产品存储管理制度
- 药械科员工管理制度
- 机电培训基地管理制度
- 物业日常消防管理制度
- Msoffice操作模拟题及答案
- 机关单位会务管理制度
- 市政水电设备管理制度
- 麋鹿测试题目及答案
- 药物线安全管理制度
- 江西报业传媒集团有限责任公司招聘笔试题库2025
- 理论联系实际谈一谈你对矛盾的普遍性和特殊性的辩证关系原理的认识参考答案一
- 分户山林土地分割协议书
- 生产管理部部长竞聘
- 停车场物业合同协议书
- 2025年苏教版数学小学四年级下册期末真题及答案(七)
- 2025年软件设计师考试模拟题大全试题及答案
- 2025-2030年中国别墅电梯行业市场现状供需分析及投资评估规划分析研究报告
- 商会授权运营协议书
- 石膏砂浆抹灰施工工艺流程及操作要点
- 2025-2030年中国电子材料行业市场现状供需分析及投资评估规划分析研究报告
评论
0/150
提交评论