云南省楚雄州永仁一中2025年数学高二下期末联考试题含解析_第1页
云南省楚雄州永仁一中2025年数学高二下期末联考试题含解析_第2页
云南省楚雄州永仁一中2025年数学高二下期末联考试题含解析_第3页
云南省楚雄州永仁一中2025年数学高二下期末联考试题含解析_第4页
云南省楚雄州永仁一中2025年数学高二下期末联考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省楚雄州永仁一中2025年数学高二下期末联考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.12名同学合影,站成前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的总数是()A. B. C. D.2.用数学归纳法证明不等式“”时的过程中,由到时,不等式的左边()A.增加了一项B.增加了两项C.增加了两项,又减少了一项D.增加了一项,又减少了一项3.下列结论错误的是()A.命题“若p,则q”与命题“若¬q,则¬p”互为逆否命题B.命题p:,,命题q:,,则“”为真C.“若,则”的逆命题为真命题D.命题P:“,使得”的否定为¬P:“,4.已知复平面内的圆:,若为纯虚数,则与复数对应的点()A.必在圆外 B.必在上 C.必在圆内 D.不能确定5.设,,则与大小关系为()A. B.C. D.6.等差数列的前9项的和等于前4项的和,若,则k=()A.10 B.7 C.4 D.37.设,命题“若,则方程有实根”的逆否命题是A.若方程有实根,则 B.若方程有实根,则C.若方程没有实根,则 D.若方程没有实根,则8.有一个奇数列,现在进行如下分组:第一组含一个数;第二组含二个数;第三组含有三个数;第四组数有试观察每组内各数之和与组的编号数有什么关系()A.等于 B.等于 C.等于 D.等于9.多面体是由底面为的长方体被截面所截得到的,建立下图的空间直角坐标系,已知、、、、、.若为平行四边形,则点到平面的距离为A. B. C. D.10.已知集合,若,则实数的值为()A.或 B.或 C.或 D.或或11.已知随机变量服从正态分布,若,则()A. B. C. D.12.若二次函数图象的顶点在第四象限且开口向上,则导函数的图象可能是A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.驻马店市某校高三年级学生一次数学诊断考试的成绩(单位:分)服从正态分布,记为事件为事件,则__________.(结果用分数示)附:;;.14.对于大于1的自然数n的三次幂可用奇数进行以下方式的“分裂”:,,,…,仿此,若的“分裂数”中有一个是49,则n的值为________.15.如果实数满足线性约束条件,则的最小值等于.16.若x,y满足x≥1y≥-1x+y≥3,则z=x+2y三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直角坐标系中,将单位圆上各点的横坐标扩大为原来的2倍,纵坐标不变,得到曲线,以为极点,轴正半轴为极轴,建立极坐标系.(1)求曲线的参数方程;(2)设为曲线上一点,点的极坐标为,求的最大值及此时点的坐标.18.(12分)如图,斜三棱柱中,侧面为菱形,底面是等腰直角三角形,,C.(1)求证:直线直线;(2)若直线与底面ABC成的角为,求二面角的余弦值.19.(12分)在直角坐标系中,圆C的参数方程(为参数),以O为极点,x轴的非负半轴为极轴建立极坐标系.(1)求圆C的极坐标方程;(2)直线l的极坐标方程是,射线与圆C的交点为O、P,与直线l的交点为Q,求线段的长.20.(12分)在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.(1)求和的直角坐标方程;(2)已知直线与轴交于点,且与曲线交于两点,求的值.21.(12分)甲、乙两人进行象棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立.(1)求甲在4局以内(含4局)赢得比赛的概率;(2)用X表示比赛决出胜负时的总局数,求随机变量X的分布列和均值.22.(10分)在直角坐标系中,直线:,圆:(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系.(1)求,的极坐标方程;(2)若直线的极坐标方程为,设,的交点为,,求的面积.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】试题分析:第一步从后排8人中选2人有种方法,第二步6人前排排列,先排列选出的2人有种方法,再排列其余4人只有1种方法,因此所有的方法总数的种数是考点:排列组合点评:此类题目的求解一般遵循先选择后排列,结合分步计数原理的方法2、C【解析】解:n=k时,左边="1"/k+1+1/k+2++1/k+k,n=k时,左边="1"/(k+1)+1+1/(k+1)+2++1/(k+1)+(k+1)="(1/"k+1+1/k+2++1/k+k)-1/k+1+1/2k+1+1/2k+2故选C3、C【解析】

由逆否命题的定义即可判断A;由指数函数的单调性和二次函数的值域求法,可判断B;由命题的逆命题,可得m=0不成立,可判断C;运用命题的否定形式可判断D.【详解】解:命题“若p则q”与命题“若¬q则¬p”互为逆否命题,故A正确;命题,,由,可得p真;命题,,由于,则q假,则“”为真,故B正确;“若,则”的逆命题为“若,则”错误,如果,不成立,故C不正确;命题P:“,使得”的否定为¬P:“,”,故D正确.故选:C.本题考查四种命题和命题的否定,考查判断能力和运算能力,属于基础题.4、A【解析】

设复数,再利用为纯虚数求出对应的点的轨迹方程,再与圆:比较即可.【详解】由题,复平面内圆:对应的圆是以为圆心,1为半径的圆.若为纯虚数,则设,则因为为纯虚数,可设,.故故,因为,故.当有.当时,两式相除有,化简得.故复数对应的点的轨迹是.则所有的点都在为圆心,1为半径的圆外.故选:A本题主要考查复数的轨迹问题,根据复数在复平面内的对应的点的关系求解轨迹方程即可.属于中等题型.5、A【解析】,选A.6、A【解析】

由等差数列的性质可得,然后再次利用等差数列的性质确定k的值即可.【详解】由等差数列的性质可知:,故,则,结合题意可知:.本题选择A选项.本题主要考查等差数列的性质及其应用,属于中等题.7、D【解析】

根据已知中的原命题,结合逆否命题的定义,可得答案.【详解】命题“若,则方程有实根”的逆否命题是命题“若方程没有实根,则”,故选:D.本题考查的知识点是四种命题,难度不大,属于基础题.8、B【解析】第组有个数,第组有个数,所以前组的数字个数是,那么前组的数字和是,所以前组的数字个数是,那么前组的数字和是,那么第组的数字和是,故选B.9、D【解析】

利用向量垂直数量积为零列方程组求出平面的法向量,结合,利用空间向量夹角余弦公式求出与所求法向量的夹角余弦,进而可得结果.【详解】建立如图所示的空间直角坐标系,则,设,为平行四边形,由得,,,,设为平面的法向量,显然不垂直于平面,故可设,,即,,所以,又,设与的夹角为,则,到平面的距离为,故选D.本题主要考查利用空间向量求点面距离,属于难题.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.10、D【解析】

就和分类讨论即可.【详解】因为当时,,满足;当时,,若,所以或.综上,的值为0或1或2.故选D.本题考查集合的包含关系,属于基础题,解题时注意利用集合中元素的性质(如互异性、确定性、无序性)合理分类讨论.11、D【解析】

随机变量服从正态分布,则,利用概率和为1得到答案.【详解】随机变量X服从正态分布,

,

答案为D.本题考查了正态分布,利用正态分布的对称性是解决问题的关键.12、A【解析】分析:先根据二次函数的判断出的符号,再求导,根据一次函数的性质判断所经过的象限即可.详解:∵函数的图象开口向上且顶点在第四象限,∴函数的图象经过一,三,四象限,

∴选项A符合,

故选:A.点睛:本题考查了导数的运算和一次函数,二次函数的图象和性质,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分析:利用条件概率公式,即可得出结论.详解:由题意,,.故答案为:.点睛:本题考查条件概率,考查正态分布,考查计算能力,属于中档题.14、7【解析】

n每增加1,则分裂的个数也增加1个,易得是从3开始的第24个奇数,利用等差数列求和公式即可得到.【详解】从到共用去奇数个数为,而是从3开始的第24个奇数,当时,从到共用去奇数个数为个,当时,从到共用去奇数个数为个,所以.故答案为:7本题考查新定义问题,归纳推理,等差数列的求和公式,考查学生的归纳推理能力,是一道中档题.15、【解析】试题分析:作出约束条件表示的可行域,如图内部(含边界),再作直线,上下平移直线,当过点时,取得最小值.考点:简单的线性规划.16、1【解析】

画出不等式组表示的可行域,将z=x+2y变形为y=-x2+【详解】画出不等式组表示的可行域,如图阴影部分所示.由z=x+2y可得y=-x平移直线y=-x2+z2,由图形得,当直线经过可行域内的点A时,直线y=-由x+y=3y=-1解得x=4所以点A的坐标为(4,-1).所以zmin故答案为1.利用线性规划求最值体现了数形结合思想的运用,解题的关键有两个:一是准确地画出不等式组表示的可行域;二是弄清楚目标函数中z的几何意义,根据题意判断是截距型、斜率型、还是距离型,然后再结合图形求出最优解后可得所求.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(为参数);(2)最大值,此时.【解析】

(1)根据坐标变换可得曲线的方程,根据平方关系可求出其参数方程;(2)求出的直角坐标,再由两点间的距离公式可求出,结合三角函数即可求出最值.【详解】(1)依题意可得曲线C的直角坐标方程为,所以其参数方程为(为参数).(2),设,则,所以当时,取得最大值,此时.本题主要考查曲线的伸缩变换,参数方程与普通方程的互化,极坐标化为直角坐标,同时考查三角函数最值的求法,属于中档题.18、(1)见解析;(2)【解析】

(1)先证平面,再证平面,可证直线直线(2)由作AB的垂线,垂足为D,则平面ABC,过A作的平行线,交于E点,则平面ABC,以AB,AC,AE分别为x,y,z轴建立空间直角坐标系,由空间向量法可求得二面角.【详解】证明:连接,侧面为菱形,,又C,,平面,,又,,平面,平面,直线直线;解:由知,平面平面,由作AB的垂线,垂足为D,则平面ABC,,得D为AB的中点,过A作的平行线,交于E点,则平面ABC,建立如图所示的空间直角坐标系,设,则为平面的一个法向量,则0,,2,,,设平面的法向量,由,取,得,,故二面角的余弦值为.利用向量法求二面角的注意事项:(1)两平面的法向量的夹角不一定就是所求的二面角,有可能是两法向量夹角的补角为所求;(2)求平面的法向量的方法有,①待定系数法,设出法向量坐标,利用垂直关系建立坐标的方程,解之即可得法向量;②先确定平面的垂线,然后取相关线段对应的向量,即确定了平面的法向量.19、(1);(2)2【解析】

(1)首先利用对圆C的参数方程(φ为参数)进行消参数运算,化为普通方程,再根据普通方程化极坐标方程的公式得到圆C的极坐标方程.(2)设,联立直线与圆的极坐标方程,解得;设,联立直线与直线的极坐标方程,解得,可得.【详解】(1)圆C的普通方程为,又,所以圆C的极坐标方程为.(2)设,则由解得,,得;设,则由解得,,得;所以本题考查圆的参数方程与普通方程的互化,考查圆的极坐标方程,考查极坐标方程的求解运算,考查了学生的计算能力以及转化能力,属于基础题.20、(1)直线的直角坐标方程为,曲线的普通方程为(2)【解析】

(1)利用极坐标化直角坐标的公式求直线l的直线坐标方程,消参求出曲线的普通方程;(2)直线的参数方程为(为参数),代入,得,再利用直线参数方程t的几何意义求的值.【详解】解:(1)因为直线的极坐标方程为,所以直线的直角坐标方程为.因为曲线的参数方程为(为参数),所以曲线的普通方程为.(2)由题可知所以直线的参数方程为(为参数),代入,得,设两点所对应的参数分别为,即,,本题主要考查极坐标参数方程和直角坐标的互化,考查直线参数方程t的几何意义,意在考查学生对这些知识的理解掌握水平,属于基础题.21、(1);(2)分布列见解析,.【解析】

(1)根据概率的乘法公式,求出对应的概率,即可得到结论.(2)利用离散型随机变量分别求出对应的概率,即可求X的分布列以及数学期望.【详解】用A表示“甲在4局以内(含4局)赢得比赛”,表示“第k局甲获胜”,表示“第k局乙获胜”则,,.(1).(2)X的所有可能取值为.,,,.∴X的分布列为X2345P∴本题考查了相互独立事件、互斥事件的概率计算公式、随机变量的分布列与数学期望,考查了推理能力与计算能力,属于中档题.22、(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论