版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
热点02方程(组)与不等式(组)方程(组)与不等式(组)的考点,在中考数学中出题类型比较广泛,选择题、填空题、解答题都有可能出现,并且对应难度也多为中等难度,是属于占分较多的一类考点。但是同一张试卷,方程类问题只会出现一种,不会重复考察。涉及本考点的知识点重点有:由实际问题抽象出一次方程(组)或分式方程,解方程(包含一次方程、二次方程、分式方程),一元二次方程的定义、解法及跟的判别式、根与系数的关系、实际应用等。不等式中常考不等式的基本性质,解一元一次不等式(组)及不等式(组)的应用题等。这就要求考生在复习该部分考点时,熟记各方程(组)和不等式(组)的相关概念、性质、解法及应用。一次方程(组):熟记定义,熟悉解法步骤,注重基础计算格式及其准确性,实际应用找准等量关系;一次方程(组)如果考定义或者实际应用时,多以选择、填空题形式出现,这就从问题本身降低了难度,但是也要求必须对这部分的定义或实际应用的等量关系较为熟悉才能更快更准确的拿分。而对一次方程(组)解法的考察,多在于其解法步骤上,所以基本各类方程的解法步骤必须熟悉。不等式(组):熟记解法步骤,注意是否变号,画解集—>向右,<向左,实际应用找准不等量关系;不等式(组)解法的考察多以解答题的形式出现,还会要求在数轴上画出解集,这类问题一是不能漏画解集,二是实心、空心,向左、向右不要搞反了。不等式(组)的实际应用问题,也基本都是以解答题形式出现,并且常和二元一次方程组结合考察,分值较高,复习时需要不留“死角”。分式方程及其应用:解分式方程勿忘验根;分式方程的考察不管是单独的解分式方程,还是分式方程的应用题,在解完方程之后,都需要加上“验根”这一步,这步缺失是要扣分的。其他注意事项同一次方程(组)。一元二次方程:考定义要注意“2次”与“系数≠0”要同时成立;考解的情况想“b2-4ac”;考两根关系想“根与系数的关系”;中考中对一元二次方程的考察是多方面的,每个考点都有不同的考察方向,而且,一元二次方程还可以结合二次函数同时考察,有些考点的变形就更多.中考复习时,需要对一元二次方程的各个知识重点都加以重视,遇到问题随机应变。方程(组)与不等式(组)的考察,在解法上,多偏重于数学考察,即直接以普通数学问题出现;但是该考点的应用部分则有一定的考察热点,近几年常结合的考点有:古代数学著作如《九章算术》、《算学启蒙》、《增删算法统宗》等,另有一些和居民生活联系比较紧密的一些生活实事如全民运动、工厂生产口罩、快递邮寄、健康生活、商品买卖、环境改造等A卷(建议用时:90分钟)1.(2021•株洲·中考真题)方程﹣1=2的解是()A.x=2 B.x=3 C.x=5 D.x=6【分析】移项,合并同类项,系数化成1即可.【解答】解:﹣1=2,移项,得=2+1,合并同类项,得=3,系数化成1,得x=6,故选:D.2.(2021•温州·中考真题)解方程﹣2(2x+1)=x,以下去括号正确的是()A.﹣4x+1=﹣x B.﹣4x+2=﹣x C.﹣4x﹣1=x D.﹣4x﹣2=x【分析】可以根据乘法分配律先将2乘进去,再去括号.【解答】解:根据乘法分配律得:﹣(4x+2)=x,去括号得:﹣4x﹣2=x,故选:D.3.(2021•丽水·中考真题)若﹣3a>1,两边都除以﹣3,得()A.a<﹣ B.a>﹣ C.a<﹣3 D.a>﹣3【分析】根据不等式的性质3求出答案即可.【解答】解:∵﹣3a>1,∴不等式的两边都除以﹣3,得a<﹣,故选:A.4.(2021•重庆·中考真题)不等式x>5的解集在数轴上表示正确的是()A. B. C. D.【分析】明确x>5在数轴上表示5的右边的部分即可.【解答】解:不等式x>5的解集在数轴上表示为:5右边的部分,不包括5,故选:A.5.(2021•重庆·中考真题)若关于x的方程+a=4的解是x=2,则a的值为.【分析】把x=2代入方程+a=4得出+a=4,再求出方程的解即可.【解答】解:把x=2代入方程+a=4得:+a=4,解得:a=3,故答案为:3.6.(2021•广州·中考真题)方程=的解为()A.x=﹣6 B.x=﹣2 C.x=2 D.x=6【分析】求解分式方程,根据方程的解得结论.【解答】解:去分母,得x=2x﹣6,∴x=6.经检验,x=6是原方程的解.故选:D.7.(2021•巴中·中考真题)关于x的分式方程﹣3=0有解,则实数m应满足的条件是()A.m=﹣2 B.m≠﹣2 C.m=2 D.m≠2【分析】解分式方程得4x=6﹣m,由题意可知x≠2,则6﹣m≠8,即可求m的取值.【解答】解:﹣3=0,方程两边同时乘以2﹣x,得m+x﹣3(2﹣x)=0,去括号得,m+x﹣6+3x=0,合并同类项得,4x=6﹣m,∵方程有解,∴x≠2,∴6﹣m≠8,∴m≠﹣2,故选:B.8.(2021•赤峰·中考真题)一元二次方程x2﹣8x﹣2=0,配方后可变形为()A.(x﹣4)2=18 B.(x﹣4)2=14 C.(x﹣8)2=64 D.(x﹣4)2=1【分析】将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后即可得出答案.【解答】解:∵x2﹣8x﹣2=0,∴x2﹣8x=2,则x2﹣8x+16=2+16,即(x﹣4)2=18,故选:A.9.(2021•聊城·中考真题)关于x的方程x2+4kx+2k2=4的一个解是﹣2,则k值为()A.2或4 B.0或4 C.﹣2或0 D.﹣2或2【分析】直接把x=﹣2代入方程x2+4kx+2k2=4得4﹣8k+2k2=4,然后解关于k的一元二次方程即可.【解答】解:把x=﹣2代入方程x2+4kx+2k2=4得4﹣8k+2k2=4,整理得k2﹣4k=0,解得k1=0,k2=4,即k的值为0或4.故选:B.10.(2021•滨州·中考真题)把不等式组中每个不等式的解集在同一条数轴上表示出来,正确的为()A. B. C. D.【分析】先解出不等式组中的每一个不等式的解集,然后即可写出不等式组的解集,再在数轴上表示出每一个不等式的解集即可.【解答】解:,解不等式①,得:x>﹣6,解不等式②,得:x≤13,故原不等式组的解集是﹣6<x≤13,其解集在数轴上表示如下:,故选:B.11.(2021•潍坊·中考真题)若菱形两条对角线的长度是方程x2﹣6x+8=0的两根,则该菱形的边长为()A. B.4 C.2 D.5【分析】先求出方程的解,即可得出AC=4,BD=2,根据菱形的性质求出AO和OD,根据勾股定理求出AD即可.【解答】解:解方程x2﹣6x+8=0得:x=4或2,即AC=4,BD=2,∵四边形ABCD是菱形,∴∠AOD=90°,AO=OC=2,BO=DO=1,由勾股定理得:AD==,故选:A.12.(2021•雅安·中考真题)若直角三角形的两边长分别是方程x2﹣7x+12=0的两根,则该直角三角形的面积是()A.6 B.12 C.12或 D.6或【分析】先解出方程x2﹣7x+12=0的两个根为3和4,再分长是4的边是直角边和斜边两种情况进行讨论,然后根据直角三角形的面积公式即可求解.【解答】解:∵x2﹣7x+12=0,∴x=3或x=4.①当长是4的边是直角边时,该直角三角形的面积是×3×4=6;②当长是4的边是斜边时,第三边是=,该直角三角形的面积是×3×=.故选:D.13.(2021•杭州·中考真题)某景点今年四月接待游客25万人次,五月接待游客60.5万人次.设该景点今年四月到五月接待游客人次的增长率为x(x>0),则()A.60.5(1﹣x)=25 B.25(1﹣x)=60.5 C.60.5(1+x)=25 D.25(1+x)=60.5【分析】依题意可知四月份接待游客25万,则五月份接待游客人次为:25(1+x),进而得出答案.【解答】解:设该景点今年四月到五月接待游客人次的增长率为x(x>0),则25(1+x)=60.5.故选:D.14.(2021•河池·中考真题)关于x的一元二次方程x2+mx﹣m﹣2=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根 C.没有实数根 D.实数根的个数由m的值确定【分析】先计算判别式的值,再配方得到Δ=(m+2)2+4>0,从而可判断方程根的情况.【解答】解:∵Δ=m2﹣4(﹣m﹣2)=m2+4m+8=(m+2)2+4>0,∴方程有两个不相等的实数根.故选:A.15.(2021•广州·中考真题)方程x2﹣4x=0的实数解是.【分析】方程利用因式分解法求出解即可.【解答】解:方程x2﹣4x=0,分解因式得:x(x﹣4)=0,可得x=0或x﹣4=0,解得:x1=0,x2=4.故答案为:x1=0,x2=4.16.(2021•枣庄·中考真题)若等腰三角形的一边长是4,另两边的长是关于x的方程x2﹣6x+n=0的两个根,则n的值为.【分析】当4为腰长时,将x=4代入原一元二次方程可求出n的值,将n值代入原方程可求出方程的解,利用较小两边之和大于第三边可得出n=8符合题意;当4为底边长时,利用等腰三角形的性质可得出根的判别式Δ=0,解之可得出n值,将n值代入原方程可求出方程的解,利用较小两边之和大于第三边可得出n=9符合题意.【解答】解:当4为腰长时,将x=4代入x2﹣6x+n=0,得:42﹣6×4+n=0,解得:n=8,当n=8时,原方程为x2﹣6x+8=0,解得:x1=2,x2=4,∵2+4>4,∴n=8符合题意;当4为底边长时,关于x的方程x2﹣6x+n=0有两个相等的实数根,∴Δ=(﹣6)2﹣4×1×n=0,解得:n=9,当n=9时,原方程为x2﹣6x+9=0,解得:x1=x2=3,∵3+3=6>4,∴n=9符合题意.∴n的值为8或9.故答案为:8或9.17.(2021•遵义·中考真题)小明用30元购买铅笔和签字笔,已知铅笔和签字笔的单价分别是2元和5元,他买了2支铅笔后,最多还能买几支签字笔?设小明还能买x支签字笔,则下列不等关系正确的是()A.5×2+2x≥30 B.5×2+2x≤30 C.2×2+2x≥30 D.2×2+5x≤30【分析】设小明还能买x支签字笔,利用总价=单价×数量,结合总价不超过30元,即可得出关于x的一元一次不等式,此题得解.【解答】解:设小明还能买x支签字笔,依题意得:2×2+5x≤30.故选:D.18.(2021•宁波·中考真题)我国古代数学名著《张邱建算经》中记载:“今有清酒一斗直粟十斗,醑酒一斗直粟三斗.今持粟三斛,得酒五斗,问清、醑酒各几何?意思是:现在一斗清酒价值10斗谷子,一斗醑酒价值3斗谷子,现在拿30斗谷子,共换了5斗酒,问清、醑酒各几斗?如果设清酒x斗,醑酒y斗,那么可列方程组为()A. B. C. D.【分析】设清酒x斗,醑酒y斗,根据“拿30斗谷子,共换了5斗酒”,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:设清酒x斗,醑酒y斗,依题意得:.故选:A.19.(2021•通辽·中考真题)我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托,折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则可列方程组为.【分析】设绳索长x尺,竿长y尺,根据“用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺”,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:设绳索长x尺,竿长y尺,依题意得:.故答案为:.20.(2021•淄博·中考真题)甲、乙两人沿着总长度为10km的“健身步道”健步走,甲的速度是乙的1.2倍,甲比乙提前12分钟走完全程.设乙的速度为xkm/h,则下列方程中正确的是()A.﹣=12 B.﹣=0.2 C.﹣=12 D.﹣=0.2【分析】设乙的速度为xkm/h,则甲的速度为1.2xkm/h,根据时间=路程÷速度结合甲比乙提前12分钟走完全程,即可得出关于x的分式方程,此题得解.【解答】解:12分钟=h=0.2h,设乙的速度为xkm/h,则甲的速度为1.2xkm/h,根据题意,得:﹣=0.2,故选:D.21.(2021•嘉兴·中考真题)已知二元一次方程x+3y=14,请写出该方程的一组整数解.【分析】把y看做已知数求出x,确定出整数解即可.【解答】解:x+3y=14,x=14﹣3y,当y=1时,x=11,则方程的一组整数解为.故答案为:(答案不唯一).22.(2021•北京·中考真题)方程=的解为.【分析】先将分式化为整数,然后求解并检验.【解答】解:方程两边同时乘以x(x+3)得:2x=x+3,解得x=3,检验:x=3时,x(x+3)≠0,∴方程的解为x=3.故答案为:x=3.23.(2021•扬州·中考真题)扬州雕版印刷技艺历史悠久,元代数学家朱世杰的《算学启蒙》一书曾刻于扬州,该书是中国较早的数学著作之一,书中记载一道问题:“今有良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?”题意是:快马每天走240里,慢马每天走150里,慢马先走12天,试问快马几天追上慢马?答:快马天追上慢马.【分析】设良马行x日追上驽马,根据路程=速度×时间结合两马的路程相等,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设快马行x天追上慢马,则此时慢马行了(x+12)日,依题意,得:240x=150(x+12),解得:x=20,∴快马20天追上慢马,故答案为:20.24.(2021•本溪·中考真题)为了弘扬我国书法艺术,培养学生良好的书写能力,某校举办了书法比赛,学校准备为获奖同学颁奖.在购买奖品时发现,A种奖品的单价比B种奖品的单价多10元,用300元购买A种奖品的数量与用240元购买B种奖品的数量相同.设B种奖品的单价是x元,则可列分式方程为.【分析】设B种奖品的单价是x元,则A种奖品的单价是(x+10)元,根据数量=总价÷单价,结合用300元购买A种奖品的数量与用240元购买B种奖品的数量相同,即可得出关于x的分式方程,此题得解.【解答】解:设B种奖品的单价是x元,则A种奖品的单价是(x+10)元,依题意得:=.故答案为:=.25.(2021•广元·中考真题)解方程:+=4.【分析】解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,据此解答即可.【解答】解:+=4,3(x﹣3)+2(x﹣1)=24,3x﹣9+2x﹣2=24,3x+2x=24+9+2,5x=35,x=7.26.(2021•泰州·中考真题)(1)分解因式:x3﹣9x;(2)解方程:+1=.【分析】(1)原式提取x,再利用平方差公式分解即可;(2)分式方程变形后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=x(x2﹣9)=x(x+3)(x﹣3);(2)方程整理得:+1=﹣,去分母得:2x+x﹣2=﹣5,解得:x=﹣1,检验:当x=﹣1时,x﹣2=﹣3≠0,∴分式方程的解为x=﹣1.27.(2021•兰州·中考真题)解方程:x2﹣6x﹣1=0.【分析】将方程的常数项移动方程右边,两边都加上9,左边化为完全平方式,右边合并,开方转化为两个一元一次方程,求出一次方程的解即可得到原方程的解.【解答】解:x2﹣6x﹣1=0,移项得:x2﹣6x=1,配方得:x2﹣6x+9=10,即(x﹣3)2=10,开方得:x﹣3=±,则x1=3+,x2=3﹣.28.(2021•遵义·中考真题)(1)计算(﹣1)2+|﹣2|+﹣2sin45°;(2)解不等式组:.【分析】(1)先计算乘方、去绝对值符号、化简二次根式、代入三角函数值,再进一步计算即可;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:(1)原式=1+2﹣+2﹣2×=3+﹣=3;(2)解不等式①,得:x≥3,解不等式②,得:x<5,则不等式组的解集为3≤x<5.29.(2021•桂林·中考真题)为了美化环境,建设生态桂林,某社区需要进行绿化改造,现有甲、乙两个绿化工程队可供选择,已知甲队每天能完成的绿化改造面积比乙队多200平方米,甲队与乙队合作一天能完成800平方米的绿化改造面积.(1)甲、乙两工程队每天各能完成多少平方米的绿化改造面积?(2)该社区需要进行绿化改造的区域共有12000平方米,甲队每天的施工费用为600元,乙队每天的施工费用为400元,比较以下三种方案:①甲队单独完成;②乙队单独完成;③甲、乙两队全程合作完成.哪一种方案的施工费用最少?【分析】(1)设乙工程队每天能完成x平方米的绿化改造面积,则甲工程队每天能完成(x+200)平方米的绿化改造面积,根据甲队与乙队合作一天能完成800平方米的绿化改造面积,即可得出关于x的一元一次方程,解之即可得出结论;(2)利用施工费用=每天的施工费用×施工时间,即可求出选择各方案所需施工费用,再比较后即可得出结论.【解答】解:(1)设乙工程队每天能完成x平方米的绿化改造面积,则甲工程队每天能完成(x+200)平方米的绿化改造面积,依题意得:x+200+x=800,解得:x=300,∴x+200=300+200=500.答:甲工程队每天能完成500平方米的绿化改造面积,乙工程队每天能完成300平方米的绿化改造面积.(2)选择方案①所需施工费用为600×=14400(元);选择方案②所需施工费用为400×=16000(元);选择方案③所需施工费用为(600+400)×=15000(元).∵14400<15000<16000,∴选择方案①的施工费用最少.30.(2021•日照·中考真题)某药店新进一批桶装消毒液,每桶进价35元,原计划以每桶55元的价格销售,为更好地助力疫情防控,现决定降价销售.已知这种消毒液销售量y(桶)与每桶降价x(元)(0<x<20)之间满足一次函数关系,其图象如图所示:(1)求y与x之间的函数关系式;(2)在这次助力疫情防控活动中,该药店仅获利1760元.这种消毒液每桶实际售价多少元?【分析】(1)设y与x之间的函数表达式为y=kx+b,将点(1,110)、(3,130)代入一次函数表达式,即可求解;(2)根据利润等于每桶的利润乘以销售量得关于x的一元二次方程,通过解方程即可求解.【解答】解:(1)设y与x之间的函数关系式为:y=kx+b,将点(1,110)、(3,130)代入一次函数表达式得:,解得:,故函数的表达式为:y=10x+100;(2)由题意得:(10x+100)×(55﹣x﹣35)=1760,整理,得x2﹣10x﹣24=0.解得x1=12,x2=﹣2(舍去).所以55﹣x=43.答:这种消毒液每桶实际售价43元.31.(2021•黑龙江·中考真题)某中学初三学生在开学前去商场购进A,B两款书包奖励班级表现优秀的学生,购买A款书包共花费6000元,购买B款书包共花费3200元,且购买A款书包数量是购买B款书包数量的3倍,已知购买一个B款书包比购买一个A款书包多花30元.(1)求购买一个A款书包、一个B款书包各需多少元?(2)为了调动学生的积极性,学校在开学后再次购进了A,B两款书包,每款书包不少于14个,总花费恰好为2268元,且在购买时商场对两款书包的销售单价进行了调整,A款书包销售单价比第一次购买时提高了8%,B款书包按第一次购买时销售单价的九折出售.求此次A款书包有几种购买方案?(3)在(2)的条件下,商场这次销售两款书包,单价调整后利润比调整前减少72元,直接写出两款书包的购买方案.【分析】(1)设购买一个A款书包需要x元,则购买一个B款书包需要(x+30)元,利用数量=总价÷单价,结合用6000元购买A款书包的数量是用3200元购买B款书包数量的3倍,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购买m个B款书包,则购买(42﹣m)个A款书包,根据购买的每款书包不少于14个,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合(42﹣m)为整数,即可得出m的值,进而可得出此次A款书包购买方案的个数;(3)利用减少的利润=销售每个B款书包减少的利润×销售数量﹣销售每个A款书包增加的利润×销售数量,即可得出关于m的一元一次方程,解之即可得出结论.【解答】解:(1)设购买一个A款书包需要x元,则购买一个B款书包需要(x+30)元,依题意得:=3×,解得:x=50,经检验,x=50是原方程的解,且符合题意,∴x+30=50+30=80(元).答:购买一个A款书包需要50元,购买一个B款书包需要80元.(2)设购买m个B款书包,则购买=(42﹣m)个A款书包,依题意得:,解得:14≤m≤21.又∵(42﹣m)为整数,∴m为3的倍数,∴m可以取15,18,21,∴此次A款书包有3种购买方案.(3)依题意得:80×(1﹣0.9)m﹣50×8%(42﹣m)=72,解得:m=18,∴42﹣m=42﹣×18=18(个).答:购买18个A款书包,18个B款书包.B卷(建议用时:80分钟)1.(2021•常德·中考真题)若a>b,下列不等式不一定成立的是()A.a﹣5>b﹣5 B.﹣5a<﹣5b C.> D.a+c>b+c【分析】根据不等式的性质逐个判断即可.【解答】解:A.∵a>b,∴a﹣5>b﹣5,故本选项不符合题意;B.∵a>b,∴﹣5a<﹣5b,故本选项不符合题意;C.∵a>b,∴当c>0时,;当c<0时,,故本选项符合题意;D.∵a>b,∴a+c>b+c,故本选项不符合题意;故选:C.2.(2021•安徽·中考真题)设a,b,c为互不相等的实数,且b=a+c,则下列结论正确的是()A.a>b>c B.c>b>a C.a﹣b=4(b﹣c) D.a﹣c=5(a﹣b)【分析】根据等式的基本性质,对已知等式进行变形即可.【解答】解:∵b=a+c,∴5b=4a+c,在等式的两边同时减去5a,得到5(b﹣a)=c﹣a,在等式的两边同时乘﹣1,则5(a﹣b)=a﹣c.故选:D.3.(2021•哈尔滨·中考真题)方程=的解为()A.x=5 B.x=3 C.x=1 D.x=2【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3x﹣1=2(2+x),去括号得:3x﹣1=4+2x,移项合并得:x=5,检验:当x=5时,(2+x)•(3x﹣1)≠0,∴分式方程的解为x=5.故选:A.4.(2021•阿坝州·中考真题)已知关于x的分式方程=3的解是x=3,则m的值为()A.3 B.﹣3 C.﹣1 D.1【分析】把x=3代入分式方程求得m的值即可.【解答】解:把x=3代入分式方程=3,得,整理得6+m=3,解得m=﹣3.故选:B.5.(2021•新疆·中考真题)一元二次方程x2﹣4x+3=0的解为()A.x1=﹣1,x2=3 B.x1=1,x2=3 C.x1=1,x2=﹣3 D.x1=﹣1,x2=﹣3【分析】利用因式分解法求解即可.【解答】解:∵x2﹣4x+3=0,∴(x﹣1)(x﹣3)=0,则x﹣1=0或x﹣3=0,解得x1=1,x2=3,故选:B.6.(2021•潍坊·中考真题)不等式组的解集在数轴上表示正确的是()A. B. C. D.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2x+1≥x,得:x≥﹣1,解不等式﹣,得:x<2,则不等式组的解集为﹣1≤x<2,故选:D.7.(2021•西藏·中考真题)已知一元二次方程x2﹣10x+24=0的两个根是菱形的两条对角线长,则这个菱形的面积为()A.6 B.10 C.12 D.24【分析】法1:利用因式分解法求出已知方程的解确定出菱形两条对角线长,进而求出菱形面积即可;法2:利用根与系数的关系求出两根之积,再根据对角线乘积的一半求出菱形面积即可.【解答】解:法1:方程x2﹣10x+24=0,分解得:(x﹣4)(x﹣6)=0,可得x﹣4=0或x﹣6=0,解得:x=4或x=6,∴菱形两对角线长为4和6,则这个菱形的面积为×4×6=12;法2:设a,b是方程x2﹣10x+24=0的两根,∴ab=24,则这个菱形的面积为ab=12.故选:C.8.(2021•聊城·中考真题)若﹣3<a≤3,则关于x的方程x+a=2解的取值范围为()A.﹣1≤x<5 B.﹣1<x≤1 C.﹣1≤x<1 D.﹣1<x≤5【分析】把a看作已知数求出方程的解得到x的值,由﹣3<a≤3代入计算即可.【解答】解:x+a=2,x=﹣a+2,∵﹣3<a≤3,∴﹣3≤﹣a<3,∴﹣1≤﹣a+2<5,∴﹣1≤x<5,故选:A.9.(2021•长春·中考真题)关于x的一元二次方程x2﹣6x+m=0有两个不相等的实数根,则m的值可能是()A.8 B.9 C.10 D.11【分析】根据判别式的意义得到Δ=(﹣6)2﹣4m>0,然后解关于m的不等式,最后对各选项进行判断.【解答】解:根据题意得Δ=(﹣6)2﹣4m>0,解得m<9.故选:A.10.(2021•菏泽·中考真题)关于x的方程(k﹣1)2x2+(2k+1)x+1=0有实数根,则k的取值范围是()A.k且k≠1 B.k≥且k≠1 C.k D.k≥【分析】分k﹣1=0和k﹣1≠0两种情况,利用根的判别式求解可得.【解答】解:当k﹣1≠0,即k≠1时,此方程为一元二次方程.∵关于x的方程(k﹣1)2x2+(2k+1)x+1=0有实数根,∴Δ=(2k+1)2﹣4×(k﹣1)2×1=12k﹣3≥0,解得k≥;当k﹣1=0,即k=1时,方程为3x+1=0,显然有解;综上,k的取值范围是k≥,故选:D.11.(2021•吉林·中考真题)古埃及人的“纸草书”中记载了一个数学问题:一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33.若设这个数是x,则所列方程为()A.x+x+x=33 B.x+x+x=33 C.x+x+x+x=33 D.x+x+x﹣x=33【分析】根据题意列方程x+x+x+x=33.【解答】解:由题意可得x+x+x+x=33.故选:C.12.(2021•黑龙江·中考真题)为迎接2022年北京冬奥会,某校开展了以迎冬奥为主题的演讲活动,计划拿出180元钱全部用于购买甲、乙两种奖品(两种奖品都购买),奖励表现突出的学生,已知甲种奖品每件15元,乙种奖品每件10元,则购买方案有()A.5种 B.6种 C.7种 D.8种【分析】设购买x件甲种奖品,y件乙种奖品,根据总价=单价×数量,即可得出关于x,y的二元一次方程,结合x,y均为正整数,即可得出x,y的值,进而可得出共有5种购买方案.【解答】解:设购买x件甲种奖品,y件乙种奖品,依题意得:15x+10y=180,∴x=12﹣y.又∵x,y均为正整数,∴或或或或,∴共有5种购买方案.故选:A.13.(2021•丹东·中考真题)若实数k、b是一元二次方程(x+3)(x﹣1)=0的两个根,且k<b,则一次函数y=kx+b的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限【分析】通过解一元二次方程可得出k,b的值,再利用一次函数图象与系数的关系可得出函数y=kx+b的图象经过第一、二、四象限,此题得解.【解答】解:∵实数k、b是一元二次方程(x+3)(x﹣1)=0的两个根,且k<b,∴k=﹣3,b=1,∴函数y=kx+b的图象经过第一、二、四象限,不经过第三象限.故选:C.14.(2021•牡丹江·中考真题)已知某商店有两件进价不同的运动衫都卖了160元,其中一件盈利60%,另一件亏损20%,在这次买卖中这家商店()A.不盈不亏 B.盈利20元 C.盈利10元 D.亏损20元【分析】设盈利的运动衫的进价为x元,亏损的运动衫的进价为y元,利用利润=售价﹣进价,即可得出关于x(y)的一元一次方程,解之即可得出x(y)的值,再将两件运动衫的利润相加即可得出结论.【解答】解:设盈利的运动衫的进价为x元,亏损的运动衫的进价为y元,依题意得:160﹣x=60%x,160﹣y=﹣20%y,解得:x=100,y=200,∴(160﹣100)+(160﹣200)=60﹣40=20(元),∴在这次买卖中这家商店盈利20元.故选:B.15.(2021•日照·中考真题)若不等式组的解集是x>3,则m的取值范围是()A.m>3 B.m≥3 C.m≤3 D.m<3【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:解不等式x+6<4x﹣3,得:x>3,∵x>m且不等式组的解集为x>3,∴m≤3,故选:C.16.(2021•攀枝花·中考真题)某学校准备购进单价分别为5元和7元的A、B两种笔记本共50本作为奖品发放给学生,要求A种笔记本的数量不多于B种笔记本数量的3倍,不少于B种笔记本数量的2倍,则不同的购买方案种数为()A.1 B.2 C.3 D.4【分析】设购进A种笔记本为x本,则购进B种笔记本为(50﹣x)本,由题意:A种笔记本的数量不多于B种笔记本数量的3倍,不少于B种笔记本数量的2倍,列出不等式组,解不等式组,取正整数解即可.【解答】解:设购进A种笔记本为x本,则购进B种笔记本为(50﹣x)本,由题意得:,解得:33≤x≤37,∵x为正整数,∴x的取值为34,、35、36、37,则不同的购买方案种数为4种,故选:D.17.(2021•烟台·中考真题)幻方历史悠久,传说最早出现在夏禹时代的“洛书”.把洛书用今天的数学符号翻译出来,就是一个三阶幻方.将数字1~9分别填入如图所示的幻方中,要求每一横行,每一竖行以及两条对角线上的数字之和都是15,则a的值为.【分析】利用幻方中每一横行,每一竖行以及两条对角线上的数字之和都是15,可求出幻方右下角及第二行中间的数字,再利用幻方中对角线上的数字之和为15,即可得出关于a的一元一次方程,解之即可得出结论.【解答】解:幻方右下角的数字为15﹣8﹣3=4,幻方第二行中间的数字为15﹣6﹣4=5.依题意得:8+5+a=15,解得:a=2.故答案为:2.18.(2021•湘西州·中考真题)若式子+1的值为零,则y=.【分析】根据题意,得+1=0.再根据等式的基本性质,化简为=﹣1,故求出y=0.最后,将y=0代入y﹣2,得y﹣2≠0,故y=0是该分式方程的解.【解答】解:由题意得:+1=0.∴=﹣1.∴y﹣2=﹣2.∴y=0.当y=0时,y﹣2≠0.∴该分式方程的解为y=0.19.(2021•毕节市·中考真题)某校八年级组织一次篮球赛,各班均组队参赛,赛制为单循环形式(每两班之间都赛一场),共需安排15场比赛,则八年级班级的个数为()A.5 B.6 C.7 D.8【分析】设八年级有x个班,根据“各班均组队参赛,赛制为单循环形式,且共需安排15场比赛”,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:设八年级有x个班,依题意得:x(x﹣1)=15,整理得:x2﹣x﹣30=0,解得:x1=6,x2=﹣5(不合题意,舍去).故选:B.20.(2021•西藏·中考真题)若关于x的分式方程﹣1=无解,则m=.【分析】解方程得x=m﹣1,由方程无解,可知x=1,即可求m=2.【解答】解:﹣1=,方程两边同时乘以x﹣1,得2x﹣(x﹣1)=m,去括号,得2x﹣x+1=m,移项、合并同类项,得x=m﹣1,∵方程无解,∴x=1,∴m﹣1=1,∴m=2,故答案为2.21.(2021•荆州·中考真题)若关于x的方程+=3的解是正数,则m的取值范围为.【分析】先解分式方程,根据分式方程的解为正数和分式方程有意义的情况,即可得出m的取值范围.【解答】解:原方程左右两边同时乘以(x﹣2),得:2x+m﹣(x﹣1)=3(x﹣2),解得:x=,∵原方程的解为正数且x≠2,∴,解得:m>﹣7且m≠﹣3,故答案为:m>﹣7且m≠﹣3.22.(2021•桂林·中考真题)解一元一次方程:4x﹣1=2x+5.【分析】方程移项、合并同类项、系数化为1即可.【解答】解:4x﹣1=2x+5,4x﹣2x=5+1,2x=6,x=3.23.(2021•镇江·中考真题)(1)解方程:﹣=0;(2)解不等式组:.【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集即可.【解答】解:(1)去分母得:3(x﹣2)﹣2x=0,去括号得:3x﹣6﹣2x=0,解得:x=6,检验:把x=6代入得:x(x﹣2)=24≠0,∴分式方程的解为x=6;(2),由①得:x≥1,由②得:x>2,则不等式组的解集为x>2.24.(2021•嘉兴·中考真题)小敏与小霞两位同学解方程3(x﹣3)=(x﹣3)2的过程如下
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 鹰潭市人民医院造口袋更换技术考核
- 大兴安岭人民医院重症临床路径管理考核
- 台州市人民医院药物相互作用评估考核
- 亳州市中医院听骨链重建术操作资格认证
- 常州市人民医院质量风险评估考核
- 连云港市中医院PICC带管孕妇管理考核
- 宁德市人民医院中药不良反应监测考核
- 上饶市人民医院微针治疗技术规范化考核
- 宿迁市中医院护理环境管理考核
- 宣城市中医院股骨髁上骨折锁定钢板考核
- 2025成考英语词汇必背3500词
- 2025中医技能考试题及答案
- 质量控制流程梳理与执行标准
- 2025中科芯集成电路有限公司校园招聘笔试历年参考题库附带答案详解(3卷合一)
- 产品预购合同(标准版)
- 铁路工作安全培训课件
- 水泥厂设备巡检规程
- 2025年小学心理健康学科新课程标准考试测试卷
- 城乡街道环卫清洁服务方案投标文件(技术标)
- 2.1《地形》(课件)-八年级地理上册人教版
- 装载机培训教材
评论
0/150
提交评论