




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列图形:线段、角、三角形、四边形,等边三角形、等腰三角形、正五边形、正六边形中,是轴对称图形的有()个A.5 B.6 C.7 D.82.下列实数为无理数的是()A.0.101 B. C. D.3.已知是三角形的三边长,如果满足,则三角形的形状是()A.等腰三角形 B.等边三角形 C.直角三角形 D.钝角三角形4.下列命题是真命题的是()A.如果一个数的相反数等于这个数本身,那么这个数一定是0B.如果一个数的倒数等于这个数本身,那么这个数一定是1C.如果一个数的平方等于这个数本身,那么这个数一定是0D.如果一个数的算术平方根等于这个数本身,那么这个数一定是05.下列运算正确的是()A. B.3﹣=3C. D.6.已知点都在函数的图象上,下列对于的关系判断正确的是()A. B. C. D.7.如图,将绕点顺时针旋转得到,使点的对应点恰好落在边上,点的对应点为,连接,其中有:①;②;③;④,四个结论,则结论一定正确的有()个A.1个 B.2个 C.3个 D.4个8.已知一次函数的图象如图所示,则一次函数的图象大致是()A. B. C. D.9.已知,则的值是()A.18 B.16 C.14 D.1210.如图,有一个池塘,其底面是边长为10尺的正方形,一个芦苇AB生长在它的中央,高出水面部分BC为1尺.如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B′.则这根芦苇的长度是()A.10尺 B.11尺 C.12尺 D.13尺二、填空题(每小题3分,共24分)11.若分式的值为零,则的值为__________.12.对于实数x,我们规定[X)表示大于x的最小整数,如[4)═5,[)=2,[﹣2.5)=﹣2,现对64进行如下操作:64[)=9[)="4"[)=3[[)=2,这样对64只需进行4次操作后变为2,类似地,只需进行4次操作后变为2的所有正整数中,最大的是.13.x减去y大于-4,用不等式表示为______.14.多项式加上一个单项式后能称为一个完全平方式,请你写出一个符合条件的单项式__________.15.已知,,,比较,,的大小关系,用“”号连接为______.16.如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是.17.在某公益活动中,小明对本年级同学的捐款情况进行了统计,绘制成如图所示的不完整的统计图,其中捐10元的人数占年级总人数的25%,则本次捐款20元的人数为______人.18.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,点D在BC边上,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则AD=_____cm.三、解答题(共66分)19.(10分)计算(1)(2)已知:,求的值.20.(6分)已知,如图,和都是等边三角形,且点在上.(1)求证:(2)直接写出和之间的关系;21.(6分)如图,在四边形中,,点是边上一点,,.(1)求证:.(2)若,,求的长.22.(8分)在边长为1的小正方形网格中,的顶点均在格点上,(1)点关于轴的对称点坐标为;(2)将向左平移3个单位长度得到,请画出,求出的坐标;(3)求出的面积.23.(8分)如图,在中,,以为直角边作等腰,,斜边交于点.(1)如图1,若,,作于,求线段的长;(2)如图2,作,且,连接,且为中点,求证:.24.(8分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)若△A1B1C1与△ABC关于y轴成轴对称,则△A1B1C1三个顶点坐标分别为A1,B1,C1;(2)在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标是.(3)在y轴上是否存在点Q.使得S△ACQ=S△ABC,如果存在,求出点Q的坐标,如果不存在,说明理由.25.(10分)解不等式(组)(1);(2)26.(10分)如图,在平面直角坐标系中,点,点.(1)若点关于轴、轴的对称点分别是点、,请分别描出、并写出点、的坐标;(2)在轴上求作一点,使最小(不写作法,保留作图痕迹)
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据轴对称图形的定义判断即可.【详解】∵轴对称图形是:线段、角、等边三角形、等腰三角形、正五边形、正六边形共6个;故答案为:B.本题考查了轴对称图形的定义,熟练掌握其定义是解题的关键.2、D【解析】由题意根据无理数的概念即无理数就是无限不循环小数,进行分析判断可得答案.【详解】解:A、0.101是有理数,B、=3是有理数,C、是有理数,D、是无限不循环小数即是无理数,故选:D.本题考查的是无理数的概念、掌握算术平方根的计算方法是解题的关键.3、C【分析】根据非负数的性质可知a,b,c的值,再由勾股定理的逆定理即可判断三角形为直角三角形.【详解】解:∵∴,,,∴,,又∵,故该三角形为直角三角形,故答案为:C.本题考查了非负数的性质及勾股定理的逆定理,解题的关键是解出a,b,c的值,并正确运用勾股定理的逆定理.4、A【分析】根据相反数是它本身的数为0;倒数等于这个数本身是±1;平方等于它本身的数为1和0;算术平方根等于本身的数为1和0进行分析即可.【详解】A、如果一个数的相反数等于这个数本身,那么这个数一定是0,是真命题;B、如果一个数的倒数等于这个数本身,那么这个数一定是1,是假命题;C、如果一个数的平方等于这个数本身,那么这个数一定是0,是假命题;D、如果一个数的算术平方根等于这个数本身,那么这个数一定是0,是假命题;故选A.此题主要考查了命题与定理,关键是掌握正确的命题为真命题,错误的命题为假命题.5、C【分析】根据二次根式得加减法法则及乘除法法则逐一计算即可得答案.【详解】A.与不是同类二次根式,不能合并,故该选项计算错误,B.=2,故该选项计算错误,C.==,故该选项计算正确,D.==,故该选项计算错误.故选:C.本题考查二次根式得运算,熟练掌握运算法则是解题关键.6、A【分析】根据题意将A,B两点代入一次函数解析式化简得到的关系式即可得解.【详解】将点代入得:,解得:,则,解得:,故选:A.本题主要考查了一次函数图像上点坐标的求解及整式的化简,熟练掌握一次函数点的求法及整式的计算法则是解决本题的关键.7、A【分析】由旋转的性质即可判定①③结论错误,②无法判定,通过等角转换即可判定④正确.【详解】由旋转的性质,得AC=CD,AC≠AD,此结论错误;由题意无法得到,此结论错误;由旋转的性质,得BC=EC,BC≠DE,此结论错误;由旋转的性质,得∠ACB=∠DCE,∵∠ACB=∠ACD+∠DCB,∠DCE=∠ECB+∠DCB,∴∠ACD=∠ECB∵AC=CD,BC=CE∴∠A=∠CDA=(180°-∠ECB),∠EBC=∠CEB=(180°-∠ECB)∴,此结论正确;故选:A.此题主要考查旋转的性质,熟练掌握,即可解题.8、C【分析】根据一次函数与系数的关系,由已知函数图象判断k、b,然后根据系数的正负判断函数y=-bx+k的图象位置.【详解】∵函数y=kx+b的图象经过第一、二、四象限,∴k<0,b>0,∴-b<0,∴函数y=-bx+k的图象经过第二、三、四象限.故选:C.本题考查一次函数的图象与系数,明确一次函数图象与系数之间的关系是解题关键.9、A【分析】根据完全平方公式可得,然后变形可得答案.【详解】∵∴∴故选:A.此题主要考查了完全平方公式,关键是掌握完全平方公式:.10、D【分析】我们可以将其转化为数学几何图形,可知边长为10尺的正方形,则B'C=5尺,设出AB=AB'=x尺,表示出水深AC,根据勾股定理列出方程,求出的方程的解即可得到芦苇的长.【详解】解:设芦苇长AB=AB′=x尺,则水深AC=(x﹣1)尺,因为边长为10尺的正方形,所以B'C=5尺在Rt△AB'C中,52+(x﹣1)2=x2,解之得x=13,即芦苇长13尺.故选D.此题主要考查了勾股定理的应用,熟练运用数形结合的解题思想是解题关键.二、填空题(每小题3分,共24分)11、【分析】令分子等于0求出x的值,再检验分母是否等于0,即可得出答案.【详解】∵分式的值为零∴x(x-1)=0∴x=0或x=1当x=1时,分母等于0,故舍去故答案为0.本题考查的是分式值为0,属于基础题型,令分子等于0求出分式中字母的值,注意求出值后一定要检验分母是否等于0,若等于0,需舍掉.12、3【解析】试题分析:将1代入操作程序,只需要3次后变为2,设这个最大正整数为m,则,从而求得这个最大的数.【解答】解:1[)=8[)=3[)=2,设这个最大正整数为m,则m[)=1,∴<1.∴m<2.∴m的最大正整数值为3.考点:估算无理数的大小13、x-y>-4【分析】x减去y即为x-y,据此列不等式.【详解】解:根据题意,则不等式为:;故答案为:.本题考查了由实际问题抽象出一元一次不等式,解答本题的关键是读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.14、12n【分析】首末两项是3n和2这两个数的平方,那么中间一项为加上或减去2x和1积的2倍,据此解答即可.【详解】由题意得,可以添加12n,此时,符合题意.故答案为:12n(答案不唯一).本题考查了完全平方公式,熟练掌握完全平方公式(a±b)2=a2±2ab+b2是解答本题的关键.15、【分析】分别根据有理数乘方的意义、负整数指数幂的运算法则和0指数幂的意义计算a、b、c,进一步即可比较大小.【详解】解:,,,∵,∴.故答案为:.本题主要考查了负整数指数幂的运算法则和0指数幂的意义,属于基本题型,熟练掌握基本知识是解题的关键.16、50°.【分析】根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得∠A=∠ABD,然后表示出∠ABC,再根据等腰三角形两底角相等可得∠C=∠ABC,然后根据三角形的内角和定理列出方程求解即可:【详解】∵MN是AB的垂直平分线,∴AD="BD."∴∠A=∠ABD.∵∠DBC=15°,∴∠ABC=∠A+15°.∵AB=AC,∴∠C=∠ABC=∠A+15°.∴∠A+∠A+15°+∠A+15°=180°,解得∠A=50°.故答案为50°.17、35【解析】分析:根据捐款10元的人数占总人数25%可得捐款总人数,将总人数减去其余各组人数可得答案.详解:根据题意可知,本年级捐款捐款的同学一共有20÷25%=80(人),则本次捐款20元的有:80−(20+10+15)=35(人),故答案为35.点睛:本题考查了条形统计图.计算出捐款总人数是解决问题的关键.18、1【分析】根据翻折的性质可知:AC=AE=6,CD=DE,设CD=DE=x,在Rt△DEB中利用勾股定理解决.【详解】解:在Rt△ABC中,∵AC=6,BC=8,∴,∵△ADE是由△ACD翻折,∴AC=AE=6,EB=AB﹣AE=10﹣6=4,设CD=DE=x,在Rt△DEB中,∵DE2+EB2=DB2,∴x2+42=(8﹣x)2∴x=1,∴CD=1.在Rt△ACD中,.故答案为1.本题考查翻折的性质、勾股定理,利用翻折不变性是解决问题的关键.三、解答题(共66分)19、(1);(2)1.【分析】(1)先利用完全平方公式和平方差公式计算二次根式的乘法、负指数幂运算,再计算二次根式的加减法即可得;(2)先求出和的值,再利用完全平方公式进行化简求值即可得.【详解】(1)原式,,,;(2),,,则,,,.本题考查了二次根式的混合运算、完全平方公式和平方差公式等知识点,熟练掌握二次根式的运算法则是解题关键.20、(1)证明见解析;(2)AE+AD=AB【分析】(1)利用等边三角形的性质,证明△DBC≌△EBA,得到∠EAB=∠ABC,即可判断;(2)利用(1)中全等三角形的性质得出CD=AE,即可得到AE、AD、AB的关系.【详解】解:(1)证明:∵△ABC和△BDE都是等边三角形,∴AB=BC,BE=BD,∠ABC=∠DBE=∠C=60°∴∠ABC-∠ABD=∠DBE-∠ABD∴∠DBC=∠EBA∴△DBC≌△EBA(SAS)∴∠C=∠EAB=∠ABC∴EA∥BC(2)∵△DBC≌△EBA∴CD=AE,∵CD+AD=AC=AB,∴AE+AD=AB.本题考查了等边三角形的性质和全等三角形的判定和性质,熟练掌握全等三角形的判定和性质是解题的关键.21、(1)见解析;(2)【分析】(1)根据“∠B=90°,AC⊥CD”得出∠2=∠BAC,即可得出答案;(2)由(1)可得AC=CD,并根据勾股定理求出AC的值,再次利用勾股定理求出AD的值,即可得出答案.【详解】(1)证明:∵,∴.∵,∴,∴.在和中,.(2)解:∵,∴,.∵,∴在中,,∵,∴在中,.本题考查的是全等三角形和勾股定理,解题关键是利用两个直角得出.22、(1)点关于轴的对称点坐标为;(2)图详见解析,的坐标为;(3)【分析】(1)关于轴对称的两点横坐标互为相反数,纵坐标相等即得;(2)先找出关键点,再将关键点向左平移3个单位长度并顺次连接即得,最后根据图即得的坐标;(3)将填充成梯形并求出面积,再将梯形面积减去增加部分即得.【详解】解:(1)∵点坐标为(3,2)∴点关于轴的对称点坐标为(,);(2)如图所示,的坐标为(,)(3)如下图作梯形∵∴本题考查直角坐标系中图形平移、轴对称的坐标特征及填补法求三角形的面积,解题关键是熟练掌握关于轴对称的两点横坐标互为相反数且纵坐标相等,画平移后的图形先找关键点,填充法求三角形面积.23、(1);(2)见解析【分析】(1)由直角三角形的性质可求,由等腰直角三角形的性质可得,即可求BC的长;(2)过点A作AM⊥BC,通过证明△CNM∽△CBD,可得,可得CD=2CN,AN=BD,由“SAS”可证△ACN≌△CFB,可得结论.【详解】(1),,,,,.,,,且,,,;(2)如图,过点作,,,,,,,,,,,,,且,,且,,.,.本题是三角形综合题,考查了全等三角形的判定和性质,等腰三角形的性质,直角三角形的性质,相似三角形的判定和性质等知识,添加恰当辅助线构造全等三角形是本题的关键.24、(1)(﹣1,1),(﹣4,2),(﹣3,4);(2)(2,0);(3)存在,或.【分析】(1)作出A、B、C关于y轴的对称点A′、B′、C′即可得到坐标;(2)作点B关于x轴的对称点B′,连接AB′交x轴于P,此时PA+PB的值最小;(3)存在.设Q(0,m),由S△ACQ=S△ABC可知三角形ACQ的面积,延长AC交y轴与点D,求出直线AC解析式及点D坐标,分点Q在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 园林工程预决算 第2版 课件 项目二任务一园林工程工程量计算
- java递归算法基础面试题及答案
- 法律事务部案件管理总结与合规计划
- 外科执医考试试题及答案
- 隧道测量工考试试题及答案
- 小学生煎鱼试题及答案
- 网红题目及答案
- 高中教育叙事范文
- 2025至2030中国混凝土搅拌机行业发展趋势分析与未来投资战略咨询研究报告
- 客运场景考试题及答案
- 基于数据的胜任力模型构建与优化-全面剖析
- 如何成为合格的财务主管
- 上海市2022年中考英语卷试题真题及答案详解
- 中国信达广西分公司重点债权股权实物资产项目推介表
- 2025年园林绿化工岗位技能资格知识考试题库(附含答案)
- 科技安全教育从理论到实践的转化案例
- 2024年俄罗斯第50届数学奥林匹克竞赛决赛试题真题(含答案详解)
- 《小学数学作业分层设计的研究》结题报告
- 2025年高考数学二轮复习【举一反三】专练(新高考专用)第二章函数及其性质综合测试卷(新高考专用)(解析版)
- 《孕产期乳房保健》课件
- 湖南省怀化市鹤城区2023-2024学年八年级(上)期末物理试卷(含解析)
评论
0/150
提交评论