




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,点是的外角平分线上一点,且满足,过点作于点,交的延长线于点,则下列结论:①;②;③;④.其中正确的结论有()A.1个 B.2个 C.3个 D.4个2.下列计算结果正确的是()A.﹣2x2y3+xy=﹣2x3y4 B.3x2y﹣5xy2=﹣2x2yC.(3a﹣2)(3a﹣2)=9a2﹣4 D.28x4y2÷7x3y=4xy3.如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形()A., B.,C., D.,4.下列图形中是轴对称图形的个数是()A.4个 B.3个 C.2个 D.1个5.点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3 B.y2<y3<y1 C.y3<y2<y1 D.y2<y1<y36.下列命题是真命题的是()A.如果两个角相等,那么它们是对顶角B.两锐角之和一定是钝角C.如果x2>0,那么x>0D.16的算术平方根是47.若代数式在实数范围内有意义,则实数x的取值范围是()A.x<3 B.x>3 C.x≠3 D.x=38.把一些笔记本分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本,共有学生人数为()A.6 B.5 C.6或5 D.49.如图,AD//BC,点E是线段AB的中点,DE平分,BC=AD+2,CD=7,则的值等于()A.14 B.9 C.8 D.510.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A. B. C. D.11.如图,在平面直角坐标系中,对△ABC进行循环往复的轴对称变换,若原来点A的坐标是(a,b),经过第2019次变换后所得的点A的坐标是()A.(﹣a,b) B.(﹣a,﹣b) C.(a,﹣b) D.(a,b)12.若代数式有意义,则实数x的取值范围是A. B. C. D.且二、填空题(每题4分,共24分)13.估计与0.1的大小关系是:_____0.1.(填“>”、“=”、“<”)14.已知正方形ABCD的边长为4,点E,F分别在AD,DC上,AE=DF=1,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为_____.15.如图,在△ABC中,BF⊥AC于点F,AD⊥BC于点D,BF与AD相交于点E.若AD=BD,BC=8cm,DC=3cm.则AE=_______________cm
.16.中,,,斜边,则AC的长为__________.17.在Rt△ABC中,,,,则=_____.18.如图所示,于点,且,,若,则___.三、解答题(共78分)19.(8分)如图是由边长为1个单位长度的小正方形组成的网格,的三个顶点都在格点上.(1)作出关于轴对称的,并写出点的坐标:.(2)求出的面积.20.(8分)某校要从甲、乙两名同学中挑选一人参加创新能力大赛,在最近的五次选拔测试中,他俩的成绩分别如下表,请根据表中数据解答下列问题:第1次第2次第3次第4次第5次平均分众数中位数方差甲60分75分100分90分75分80分75分75分190乙70分90分100分80分80分80分80分(1)把表格补充完整:(2)在这五次测试中,成绩比较稳定的同学是多少;若将80分以上(含80分)的成绩视为优秀,则甲、乙两名同学在这五次测试中的优秀率分别是多少;(3)历届比赛表明,成绩达到80分以上(含80分)就很可能获奖,成绩达到90分以上(含90分)就很可能获得一等奖,那么你认为选谁参加比赛比较合适?说明你的理由.21.(8分)在△ABC中,CA=CB=3,∠ACB=120°,将一块足够大的直角三角尺PMN(∠M=90°,∠MPN=30°)按如图所示放置,顶点P在线段AB上滑动,三角尺的直角边PM始终经过点C,并且与CB的夹角∠PCB=α,斜边PN交AC于点D.(1)当PN∥BC时,判断△ACP的形状,并说明理由.(2)在点P滑动的过程中,当AP长度为多少时,△ADP≌△BPC,为什么?(3)在点P的滑动过程中,△PCD的形状可以是等腰三角形吗?若不可以,请说明理由;若可以,请直接写出α的度数.22.(10分)若关于的二元一次方程组的解满足(1)(用含的代数式表示);(2)求的取值范围.23.(10分)在△ABC中,AB、AC边的垂直平分线分别交BC边于点M、N(1)如图①,若∠BAC=110°,则∠MAN=°,若△AMN的周长为9,则BC=(2)如图②,若∠BAC=135°,求证:BM2+CN2=MN2;(3)如图③,∠ABC的平分线BP和AC边的垂直平分线相交于点P,过点P作PH垂直BA的延长线于点H.若AB=5,CB=12,求AH的长24.(10分)某火车站北广场将于2019年底投入使用,计划在广场内种植A,B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵.(1)A,B两种花木的数量分别是多少课;(2)如果园林处安排13人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?25.(12分)2019年11月是全国消防安全月,市南区各学校组织了消防演习和消防知识进课堂等一系列活动,为更好的普及消防知识,了解本次系列活动的持续效果,学校团委在活动启动前以及活动结束后,分别对全校2000名学生进行了两次消防知识竞答活动,并随机抽取部分学生的答题情况,绘制成统计图表(部分)如图所示:根据调查的信息分析:(1)补全条形统计图;(2)活动启动前抽取的部分学生答对题数的中位数为_________;(3)请估计活动结束后该校学生答刘9道(含9道)以上的人数;(4)选择适当的统计量分析两次调查的相关数据,评价该校消防安全月系列活动的效果.系列活动结束后知识竞答活动答题情况统计表答对题数(道)78910学生数(人)23102526.“读经典古诗词,做儒雅美少年”是江赣中学收看CCTV《中国诗词大会》之后的时尚倡议.学校图书馆购进《唐诗300首》和《宋词300首》彩绘读本各若干套,已知每套《唐诗》读本的价格比每套《宋词》读本的价格贵15元,用5400元购买《宋词》读本的套数恰好是用3600元购买《唐诗》读本套数的2倍;求每套《宋词》读本的价格.
参考答案一、选择题(每题4分,共48分)1、D【分析】证明Rt△BFD≌Rt△CED(HL),Rt△ADF≌Rt△ADE(HL)利用全等三角形的性质即可解决问题.【详解】解:如图,设AC交BD于点O.∵DF⊥BF,DE⊥AC,∴∠BFD=∠DEC=90°,∵DA平分∠FAC,∴DF=DE,故①正确,∵BD=DC,∴Rt△BFD≌Rt△CED(HL),故②正确,∴EC=BF,∵AD=AD,DF=DE,∴Rt△ADF≌Rt△ADE(HL),∵AF=AE,∴EC=AB+AF=AB+AE,故③正确,∵∠DBF=∠DCE,∠AOB=∠DOC,∴∠BAC=∠BDC,故④正确.故选:D.本题考查全等三角形的判定和性质,角平分线的性质定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.2、D【分析】﹣2x2y3+xy和3x2y﹣5xy2不能合并同类项;(3a﹣2)(3a﹣2)是完全平方公式,计算结果为9a2+4﹣12a.【详解】解:A.﹣2x2y3+xy不是同类项,不能合并,故A错误;B.3x2y﹣5xy2不是同类项,不能合并,故B错误;C.(3a﹣2)(3a﹣2)=9a2+4﹣12a,故C错误;D.28x4y2÷7x3y=4xy,故D正确.故选:D.本题考查合并同类项,整式的除法,完全平方公式;熟练掌握合并同类项,整式的除法的运算法则,牢记完全平方公式是解题的关键.3、B【分析】根据平行四边形的判定方法,对每个选项进行筛选可得答案.【详解】A、∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,故A选项不符合题意;B、AB=CD,AO=CO不能证明四边形ABCD是平行四边形,故本选项符合题意;C、∵AD//BC,AD=BC,∴四边形ABCD是平行四边形,故C选项不符合题意;D、∵AB∥CD,∴∠ABC+∠BCD=180°,∠BAD+∠ADC=180°,又∵∠BAD=∠BCD,∴∠ABC=∠ADC,∵∠BAD=∠BCD,∠ABC=∠ADC,∴四边形ABCD是平行四边形,故D选项不符合题意,故选B.本题主要考查平行四边形的判定问题,熟练掌握平行四边形的性质,能够熟练判定一个四边形是否为平行四边形.平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.4、C【解析】根据轴对称图形的概念解答即可.【详解】第一个图形是轴对称图形,第二个图形不是轴对称图形,第三个图形不是轴对称图形,第四个图形是轴对称图形,第五个图形不是轴对称图形.综上所述:是轴对称图形的是第一、四共2个图形.故选C.本题考查了中对称图形以及轴对称图形,掌握中心对称图形与轴对称图形的概念是解决此类问题的关键.5、D【解析】先根据反比例函数的解析式判断出函数图象所在的象限,再根据x1<x2<0<x1,判断出三点所在的象限,再根据函数的增减性即可得出结论.【详解】∵反比例函数y=中,k=1>0,∴此函数图象的两个分支在一、三象限,∵x1<x2<0<x1,∴A、B在第三象限,点C在第一象限,∴y1<0,y2<0,y1>0,∵在第三象限y随x的增大而减小,∴y1>y2,∴y2<y1<y1.故选D.本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出函数图象所在的象限及三点所在的象限是解答此题的关键.6、D【分析】直接利用对顶角的性质、锐角钝角的定义以及实数的相关性质分别判断得出答案.【详解】A.如果两个角相等,这两角不一定是对顶角,故此选项不合题意;B.两锐角之和不一定是钝角,故此选项不合题意;C.如果x2>0,那么x>0或x<0,故此选项不合题意;D.16的算术平方根是4,是真命题.故选:D.此题主要考查了命题与定理,正确掌握相关性质是解题关键.7、C【分析】分式有意义时,分母x﹣3≠0,据此求得x的取值范围.【详解】依题意得:x﹣3≠0,解得x≠3,故选C.本题考查了分式有意义的条件.(1)分式有意义的条件是分母不等于零.(2)分式无意义的条件是分母等于零.8、A【分析】设共有学生x人,则书共(3x+8)本,再根据题意列出不等式,解出来即可.【详解】设共有学生x人,0≤(3x+8)-5(x-1)<3,解得5<x≤6.5,故共有学生6人,故选A.此题主要考察不等式的应用.9、A【分析】延长DE,CB交于点F,通过ASA证明,则有,然后利用角平分线的定义得出,从而有,则通过和解出BC,AD的值,从而答案可解.【详解】延长DE,CB交于点F∵点E是线段AB的中点,在和中,∵DE平分解得故选:A.本题主要考查全等三角形的判定及性质,角平分线的定义,等腰三角形的性质,能够找出是解题的关键.10、C【分析】本题可先根据等边三角形顶角的度数求出两底角的度数和,然后在四边形中根据四边形的内角和为360°,求出∠α+∠β的度数.【详解】∵等边三角形的顶角为60°,∴两底角和=180°-60°=120°;∴∠α+∠β=360°-120°=240°;故选C.本题综合考查等边三角形的性质及三角形内角和为180°,四边形的内角和是360°等知识,难度不大,属于基础题.11、A【分析】观察图形,可知每四次对称为一个循环组依次循环,用2019除以4,然后根据商和余数的情况,确定变换后点A所在的象限,即可求解.【详解】解:点A第一次关于x轴对称后在第四象限,点A第二次关于y轴对称后在第三象限,点A第三次关于x轴对称后在第二象限,点A第四次关于y轴对称后在第一象限,即点A回到原始位置,所以,每四次对称为一个循环组依次循环,∵2019÷4=504余3,∴经过第2019次变换后所得的A点与第三次变换的位置相同,在第二象限,坐标为(﹣a,b).故选:A.本题考查了轴对称的性质,点的坐标变换规律,认真读题找出每四次对称为一个循环组来解题是本题的关键.12、D【解析】根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使在实数范围内有意义,必须且x≠1.故选D.二、填空题(每题4分,共24分)13、>【解析】∵.,∴,∴,故答案为>.14、.【分析】利用正方形的性质证出△ABE≌△DAF,所以∠ABE=∠DAF,进而证得△GBF是直角三角形,利用直角三角形斜边中线等于斜边一半可知GH=BF,最后利用勾股定理即可解决问题.【详解】解:∵四边形ABCD为正方形,∴∠BAE=∠D=90°,AB=AD,在△ABE和△DAF中,∵,∴△ABE≌△DAF(SAS),∴∠ABE=∠DAF,∵∠ABE+∠BEA=90°,∴∠DAF+∠BEA=90°,∴∠AGE=∠BGF=90°,∵点H为BF的中点,∴GH=BF,∵BC=4、CF=CD﹣DF=4﹣1=3,∴BF==5,∴GH=BF=,故答案为:.本题考点涉及正方形的性质、三角形全等的证明、直角三角形斜边中线定理、勾股定理等知识点,难度适中,熟练掌握相关性质定理是解题关键.15、1.【分析】易证∠CAD=∠CBF,即可求证△ACD≌△BED,可得DE=CD,即可求得AE的长,即可解题.【详解】解:∵BF⊥AC于F,AD⊥BC于D,
∴∠CAD+∠C=90°,∠CBF+∠C=90°,
∴∠CAD=∠CBF,
∵在△ACD和△BED中,∴△ACD≌△BED,(ASA)
∴DE=CD,
∴AE=AD-DE=BD-CD=BC-CD-CD=1;
故答案为1.本题考查了全等三角形的判定和性质,本题中求证△ACD≌△BED是解题的关键.16、1【分析】根据题意,画出图形,然后根据10°所对的直角边是斜边的一半即可求出结论.【详解】解:如图所示:中,,,斜边,∴AC=故答案为:1.此题考查的是直角三角形的性质,掌握10°所对的直角边是斜边的一半是解决此题的关键.17、1【分析】在Rt△ABC中,∠C=90°,则AB2=AC2+BC2,根据题目给出的AB,AC的长,则根据勾股定理可以求BC的长.【详解】∵AB=13,AC=12,∠C=90°,
∴BC=1.
故答案为:1.本题考查了勾股定理在直角三角形中的运用,本题中正确的根据勾股定理求值是解题的关键.18、27°【分析】连接AE,先证Rt△ABD≌Rt△CBD,得出四边形ABCE是菱形,根据菱形的性质可推导得到∠E的大小.【详解】如下图,连接AE∵BE⊥AC,∴∠ADB=∠BDC=90°∴△ABD和△CBD是直角三角形在Rt△ABD和Rt△CBD中∴Rt△ABD≌Rt△CBD∴AD=DC∵BD=DE∴在四边形ABCE中,对角线垂直且平分∴四边形ABCE是菱形∵∠ABC=54°∴∠ABD=∠CED=27°故答案为:27°本题考查菱形的证明和性质的运用,解题关键是先连接AE,然后利用证Rt△ABD≌Rt△CBD推导菱形.三、解答题(共78分)19、(1)见解析(2)5【分析】(1)直接利用关于y轴对称点的性质得出对应点位置进而得出答案;
(2)直接利用△A′B′C′所在矩形面积减去周围三角形的面积进而得出答案.【详解】解:(1)如图所示,为所作三角形,点的坐标:(-1,2);(2)=5.本题主要考查了轴对称变换,正确得出对应点位置是解题关键.20、(1)84,104;(2)乙;40%,80%;(3)我认为选乙参加比较合适.【解析】(1)根据乙五次成绩,先求平均数,再求方差即可,(2)方差小代表成绩稳定;优秀率表示超过80分次数的多少,次数越多越优秀,(3)选择成绩高且稳定的人去参加即可.【详解】(1)乙==84,S2乙=[(70-84)2+(90-84)2+(100-84)2+(80-84)2+(80-84)2]=104(2)∵甲的方差>乙的方差∴成绩比较稳定的同学是乙,甲的优秀率=×100%=40%乙的优秀率=×100%=80%(3)我认为选乙参加比较合适,因为乙的成绩平均分和优秀率都比甲高,且比甲稳定,因此选乙参加比赛比较合适.本题考查了简单的数据分析,包括求平均数,方差,优秀率,属于简单题,熟悉计算方法和理解现实含义是解题关键.21、(1)直角三角形,理由见解析;(2)当AP=3时,△ADP≌△BPC,理由见解析;(3)当α=45°或90°或0°时,△PCD是等腰三角形【分析】(1)由PN与BC平行,得到一对内错角相等,求出∠ACP为直角,即可得证;
(2)当AP=3时,△ADP与△BPC全等,理由为:根据CA=CB,且∠ACB度数,求出∠A与∠B度数,再由外角性质得到∠α=∠APD,根据AP=BC,利用ASA即可得证;
(3)点P在滑动时,△PCD的形状可以是等腰三角形,分三种情况考虑:当PC=PD;PD=CD;PC=CD,分别求出夹角α的大小即可.【详解】(1)当PN∥BC时,∠α=∠NPM=30°,又∵∠ACB=120°,∴∠ACP=120°-30°=90°,∴△ACP是直角三角形;(2)当AP=3时,△ADP≌△BPC,理由为:∵∠ACB=120°,CA=CB,∴∠A=∠B=30°,又∵∠APC是△BPC的一个外角,∴∠APC=∠B+α=30°+α,∵∠APC=∠DPC+∠APD=30°+∠APD,∴∠APD=α,又∵AP=BC=3,∴△ADP≌△BPC;(3)△PCD的形状可以是等腰三角形,则∠PCD=120°-α,∠CPD=30°,①当PC=PD时,△PCD是等腰三角形,∴∠PCD=∠PDC==75°,即120°-α=75°,∴∠α=45°;②当PD=CD时,△PCD是等腰三角形,∴∠PCD=∠CPD=30°,即120°-α=30°,∴α=90°;③当PC=CD时,△PCD是等腰三角形,∴∠CDP=∠CPD=30°,∴∠PCD=180°-2×30°=120°,即120°-α=120°,∴α=0°,此时点P与点B重合,点D和A重合,综合所述:当α=45°或90°或0°时,△PCD是等腰三角形.本题属于三角形综合题,考查了全等三角形的判定与性质,等腰三角形的判定,外角性质,直角三角形的性质,熟练掌握全等三角形的判定与性质是解本题的关键.22、(1)1-5m,3-m;(2)-5<m<.【解析】(1)将方程组两方程相减可得x-y,两式相加可得x+y;(2)把x-y、x+y代入不等式组可得关于m的不等式组,求解可得.【详解】(1)在方程组中,①+②,得:3x+3y=9-3m,即x+y=3-m,①-②,得:x-y=1-5m,故答案为:1-5m,3-m;(2)∵,∴,解得:-5<m<.本题主要考查解二元一次方程组和一元一次不等式组的能力,根据题意得出关于m的不等式是解题的关键.23、(1)40;9;(2)见详解;(3)3.1【分析】(1)根据线段垂直平分线的性质得到AM=BM,NA=NC,根据等腰三角形的性质得到BAM=∠B,∠NAC=∠C,结合图形计算即可;(2)连接AM、AN,仿照(1)的作法得到∠MAN=90°,根据勾股定理证明结论;(3)连接AP、CP,过点P作PE⊥BC于点E,根据线段垂直平分线的性质得到AP=CP,根据角平分线的性质得到PH=PE,证明Rt△APH≌Rt△CPE得到AH=CE,证明△BPH≌△BPE,得到BH=BE,结合图形计算即可.【详解】解:(1)∵∠BAC=110°,∴∠B+∠C=180°﹣110°=70°,∵AB边的垂直平分线交BC边于点M,∴AM=BM,∴∠BAM=∠B,同理:NA=NC,∴∠NAC=∠C,∴∠MAN=110°﹣(∠BAM+∠NAC)=40°,∵△AMN的周长为9,∴MA+MN+NA=9,∴BC=MB+MN+NC=MA+MN+NA=9,故答案为:40;9;(2)如图②,连接AM、AN,∵∠BAC=131°,∴∠B+∠C=41°,∵点M在AB的垂直平分线上,∴AM=BM,∴∠BAM=∠B,同理AN=CN,∠CAN=∠C,∴∠BAM+∠CAN=41°,∴∠MAN=∠BAC﹣(∠BAM+∠CAN)=90°,∴AM2+AN2=MN2,∴BM2+CN2=MN2;(3)如图③,连接AP、CP,过点P作PE⊥BC于点E,∵BP平分∠ABC,PH⊥BA,PE⊥BC,∴PH=PE,∵点P在AC的垂直平分线上,∴AP=CP,在Rt△APH和Rt△CPE中,,∴Rt△APH≌Rt△CPE(HL),∴AH=CE,在△BPH和△BPE中,,∴△BPH≌△BPE(AAS)∴BH=BE,∴BC=BE+CE=BH+CE=AB+2AH,∴AH=(BC﹣AB)÷2=3.1.本题考查的是全等三角形的判定和性质、勾股定理、线段垂直平分线的性质、角平分线的性质、三角形内角和定理,掌握全等三角形的判定定理和性质定理是解题的关键.24、(1)A种花木的数量是4200棵,B种花木的数量是2400棵;(2)安排种植A花木的7人,种植B花木的6人,可以确保同时完成各自的任务.【分析】(1)根据在广场内种植A,B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵可以列出相应的二元一次方程组,从而可以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年体检行业竞争态势与服务质量改进研究报告
- 工业制造行业2025年计算机视觉缺陷检测技术应用前景研究报告
- 教育变革实践2025年成人教育终身学习体系与平台运营趋势研究
- 电商平台知识产权保护与网络版权保护法律援助报告
- 2025年咖啡连锁品牌市场布局与扩张战略实施效果评估报告
- 2023年网络规划设计师考前模拟试题及答案
- 2024-2025学年福建省三明市五县联盟高一(下)期中数学试卷(含答案)
- 2025年酒水库存管理及物流配送合同
- 二零二五年度宽带专线网络托管服务合作协议
- 2025版体育产业抵押担保合同法律审查意见书
- 2025年高级维修电工资格考试理论知识模拟题库及答案
- 学堂在线 高技术与现代局部战争 章节测试答案
- 煤矿职业病防治讲义课件
- 2025发展对象考试题库(带答案)
- 测井工岗位实习报告
- 2025至2030三元乙丙橡胶密封制品行业产业运行态势及投资规划深度研究报告
- 应急与消防培训课件
- 消化内镜室医院感染管理制度
- 精神科专科监护技能课件
- 2024-2025学年辽宁省七年级数学第一学期期末经典试题含解析
- 压疮的中医护理措施
评论
0/150
提交评论