2024-2025学年福建省南平市光泽县数学九上期末考试试题含解析_第1页
2024-2025学年福建省南平市光泽县数学九上期末考试试题含解析_第2页
2024-2025学年福建省南平市光泽县数学九上期末考试试题含解析_第3页
2024-2025学年福建省南平市光泽县数学九上期末考试试题含解析_第4页
2024-2025学年福建省南平市光泽县数学九上期末考试试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.下列事件是必然事件的是()A.若是的黄金分割点,则B.若有意义,则C.若,则D.抛掷一枚骰子,奇数点向上的概率是2.若函数y=(m2-3m+2)x|m|-3是反比例函数,则m的值是()A.1 B.-2 C.±2 D.23.已知二次函数y=(a﹣1)x2﹣x+a2﹣1图象经过原点,则a的取值为()A.a=±1 B.a=1 C.a=﹣1 D.无法确定4.已知某二次函数的图象如图所示,则这个二次函数的解析式为()A.y=﹣3(x﹣1)2+3 B.y=3(x﹣1)2+3C.y=﹣3(x+1)2+3 D.y=3(x+1)2+35.下列成语所描述的事件是不可能事件的是()A.日行千里 B.守株待兔 C.水涨船高 D.水中捞月6.反比例函数y=的图象与直线y=﹣x+2有两个交点,且两交点横坐标的积为负数,则t的取值范围是()A.t< B.t> C.t≤ D.t≥7.如图,某小区计划在一块长为31m,宽为10m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m1.若设道路的宽为xm,则下面所列方程正确的是()A.(31﹣1x)(10﹣x)=570 B.31x+1×10x=31×10﹣570C.(31﹣x)(10﹣x)=31×10﹣570 D.31x+1×10x﹣1x1=5708.若点M在抛物线的对称轴上,则点M的坐标可能是()A.(3,-4) B.(-3,0) C.(3,0) D.(0,-4)9.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6 B.(x+2)2=9 C.(x﹣1)2=6 D.(x﹣2)2=910.书架上放着三本古典名著和两本外国小说,小明从中随机抽取两本,两本都是古典名著的概率是()A. B. C. D.二、填空题(每小题3分,共24分)11.一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为_______.12.如图,抛物线y=﹣x2+2x+k与x轴交于A,B两点,交y轴于点C,则点B的坐标是_____;点C的坐标是_____.13.如图,为测量某河的宽度,在河对岸边选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=10m,EC=5m,CD=8m,则河的宽度AB长为______________m.14.工厂质检人员为了检测其产品的质量,从同一批次共1000件产品中随机抽取50件进行检检测出次品1件,由此估计这一批产品中的次品件数是_____.15.如图,在平面直角坐标系中,四边形和四边形都是正方形,点在轴的正半轴上,点在边上,反比例函数的图象过点、.若,则的值为_____.16.在平面坐标系中,第1个正方形的位置如图所示,点的坐标为,点的坐标为,延长交轴于点,作第2个正方形,延长交轴于点;作第3个正方形,…按这样的规律进行下去,第5个正方形的边长为__________.17.抛物线y=(x﹣1)(x﹣3)的对称轴是直线x=_____.18.如图是测量河宽的示意图,AE与BC相交于点D,∠B=∠C=90°,测得BD=120m,DC=60m,EC=50m,求得河宽AB=______m.三、解答题(共66分)19.(10分)如图,⊙O的直径AB为10cm,弦BC为6cm,D,E分别是∠ACB的平分线与⊙O,直径AB的交点,P为AB延长线上一点,且PC=PE.(1)求AC、AD的长;(2)试判断直线PC与⊙O的位置关系,并说明理由.20.(6分)计算:2cos45°﹣tan60°+sin30°﹣tan45°21.(6分)如图,在平行四边形中,、分别为边、的中点,是对角线,过点作交的延长线于点.(1)求证:;(2)若,求证:四边形是菱形.22.(8分)为加快城乡对接,建设全域美丽乡村,某地区对A、B两地间的公路进行改建.如图,A、B两地之间有一座山,汽车原来从A地到B地需途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=80千米,∠A=45°,∠B=30°.(1)开通隧道前,汽车从A地到B地大约要走多少千米?(2)开通隧道后,汽车从A地到B地大约可以少走多少千米?(结果精确到0.1千米)(参考数据:≈1.41,≈1.73)23.(8分)“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”这段话摘自《九章算术》,意思是说:如图,矩形城池ABCD,东边城墙AB长9里,南边城墙AD长7里,东门点E,南门点F分别是AB、AD的中点,EG⊥AB,FH⊥AD,EG=15里,HG经过点A,问FH多少里?24.(8分)如图,在中,,于点,于点.(1)求证:;(2)若,求四边形的面积.25.(10分)在一个不透明的袋子里有1个红球,1个黄球和个白球,它们除颜色外其余都相同,从这个袋子里摸出一个球,记录其颜色,然后放回,摇均匀后,重复该试验,经过大量试验后,发现摸到白球的频率稳定于0.5左右,求的值.26.(10分)某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被哦感染.(1)每轮感染中平均一台电脑会感染几台电脑?(2)若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?(3)轮(为正整数)感染后,被感染的电脑有________台.

参考答案一、选择题(每小题3分,共30分)1、D【分析】根据必然事件是肯定会发生的事件,对每个选项进行判断,即可得到答案.【详解】解:A、若是的黄金分割点,则;则A为不可能事件;B、若有意义,则;则B为随机事件;C、若,则,则C为不可能事件;D、抛掷一枚骰子,奇数点向上的概率是;则D为必然事件;故选:D.本题考查了必然事件的定义,解题的关键是熟练掌握定义.2、B【解析】根据反比例函数的定义,列出方程求解即可.【详解】解:由题意得,|m|-3=-1,

解得m=±1,

当m=1时,m1-3m+1=11-3×1+1=2,

当m=-1时,m1-3m+1=(-1)1-3×(-1)+1=4+6+1=11,

∴m的值是-1.

故选:B.本题考查了反比例函数的定义,熟记一般式y=(k≠2)是解题的关键,要注意比例系数不等于2.3、C【分析】将(0,0)代入y=(a﹣1)x2﹣x+a2﹣1即可得出a的值.【详解】解:∵二次函数y=(a﹣1)x2﹣x+a2﹣1的图象经过原点,∴a2﹣1=0,∴a=±1,∵a﹣1≠0,∴a≠1,∴a的值为﹣1.故选:C.本题考查了二次函数,二次函数图像上的点满足二次函数解析式,熟练掌握这一点是解题的关键,同时解题过程中要注意二次项系数不为0.4、A【分析】利用顶点式求二次函数的解析式.【详解】设二次函数y=a(x﹣1)1+2,把(0,11)代入可求出a=-1.故二次函数的解析式为y=﹣1(x﹣1)1+2.故选A.考点:待定系数法求二次函数解析式5、D【分析】事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.【详解】解:A、日行千里是随机事件,故本选项错误;B、守株待兔是随机事件,故本选项错误;C、水涨船高是必然事件,故本选项错误;D、水中捞月是不可能事件,故本选项正确.故选:D.此题考查是不可能事件的判断,掌握不可能事件的定义是解决此题的关键.6、B【分析】将一次函数解析式代入到反比例函数解析式中,整理得出x2﹣2x+1﹣6t=0,又因两函数图象有两个交点,且两交点横坐标的积为负数,根据根的判别式以及根与系数的关系可求解.【详解】由题意可得:﹣x+2=,所以x2﹣2x+1﹣6t=0,∵两函数图象有两个交点,且两交点横坐标的积为负数,∴解不等式组,得t>.故选:B.点睛:此题主要考查了反比例函数与一次函数的交点问题,关键是利用两个函数的解析式构成方程,再利用一元二次方程的根与系数的关系求解.7、A【解析】六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m1,即可列出方程:(31−1x)(10−x)=570,故选A.8、B【解析】试题解析:∴对称轴为x=-3,∵点M在对称轴上,∴M点的横坐标为-3,故选B.9、C【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【详解】解:由原方程移项,得x2﹣2x=5,方程的两边同时加上一次项系数﹣2的一半的平方1,得x2﹣2x+1=1∴(x﹣1)2=1.故选:C.此题考查利用配方法将一元二次方程变形,熟练掌握配方法的一般步骤是解题的关键.10、C【分析】画树状图(用A、B、C表示三本古典名著,a、b表示两本外国小说)展示所有20种等可能的结果数,找出从中随机抽取2本都是古典名著的结果数,然后根据概率公式求解.【详解】解:画树状图为:(用A、B、C表示三本古典名著,a、b表示两本外国小说),共有20种等可能的结果数,其中从中随机抽取2本都是古典名著的结果数为6,所以从中随机抽取2本都是古典名著的概率=.故选:C.本题考查了树状图法或列表法求概率,解题的关键是正确画出树状图或表格,然后用符合条件的情况数m除以所有等可能发生的情况数n即可,即.二、填空题(每小题3分,共24分)11、【解析】试题分析:列表得:

黑1

黑2

白1

白2

黑1

黑1黑1

黑1黑2

黑1白1

黑1白2

黑2

黑2黑1

黑2黑2

黑2白1

黑2白2

白1

白1黑1

白1黑2

白1白1

白1白2

白2

白2黑1

白2黑2

白2白1

白2白2

共有16种等可能结果总数,其中两次摸出是白球有4种.∴P(两次摸出是白球)=.考点:概率.12、(﹣1,1)(1,3)【分析】根据图象可知抛物线y=﹣x2+2x+k过点(3,1),从而可以求得k的值,进而得到抛物线的解析式,然后即可得到点B和点C的坐标.【详解】解:由图可知,抛物线y=﹣x2+2x+k过点(3,1),则1=﹣32+2×3+k,得k=3,∴y=﹣x2+2x+3=﹣(x﹣3)(x+1),当x=1时,y=1+1+3=3;当y=1时,﹣(x﹣3)(x+1)=1,∴x=3或x=﹣1,∴点B的坐标为(﹣1,1),点C的坐标为(1,3),故答案为:(﹣1,1),(1,3).本题考查了二次函数图像上点的坐标特征,二次函数与坐标轴的交点问题,二次函数与x轴的交点横坐标是ax2+bx+c=1时方程的解,纵坐标是y=1.13、16【分析】先证明,然后再根据相似三角形的性质求解即可.【详解】∵AB⊥BC,CD⊥BC且∠AEB=∠DEC∴∴∴故本题答案为:16.本题考查了相似三角形的应用,准确识图,熟练掌握和灵活运用相似三角形的判定定理与性质定理是解题的关键.14、1【分析】求出次品所占的百分比,即可求出1000件中次品的件数.【详解】解:1000×=1(件),故答案为:1.考查样本估计总体,求出样本中次品所占的百分比是解题的关键.15、【分析】设正方形ODEF的边长为,则E,B,再代入反比例函数求出k的值即可.【详解】设正方形ODEF的边长为,则E,B,

∵点B、E均在反比例函数的图象上,

∴解得:或(舍去),当时,.故答案为:.本题是反比例函数与几何的综合,考查了反比例函数图象上点的坐标特点,正方形的性质,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.16、【分析】先求出第一个正方形ABCD的边长,再利用△OAD∽△BA1A求出第一个正方形的边长,再求第三个正方形边长,得出规律可求出第5个正方形的边长.【详解】∵点的坐标为,点的坐标为∴OA=3,OD=4,∴∵∠DAB=90°∴∠DAO+∠BAA1=90°,又∵∠DAO+∠ODA=90°,∴∠ODA=∠BAA1∴△OAD∽△BA1A∴即∴∴同理可求得得出规律,第n个正方形的边长为∴第5个正方形的边长为.本题考查正方形的性质,相似三角形的判定和性质,勾股定理的运用,此题的关键是根据计算的结果得出规律.17、1【分析】将抛物线的解析式化为顶点式,即可得到该抛物线的对称轴;【详解】解:∵抛物线y=(x﹣1)(x﹣3)=x1﹣4x+3=(x﹣1)1﹣1,∴该抛物线的对称轴是直线x=1,故答案为:1.本题考查了二次函数的性质,掌握二次函数的性质是解题的关键.18、1【分析】由两角对应相等可得△BAD∽△CED,利用对应边成比例即可得两岸间的大致距离AB的长.【详解】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△ECD,∴,即,解得:AB==1(米).故答案为1.本题主要考查了相似三角形的应用,用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例.三、解答题(共66分)19、(1)AC=8cm;AD=cm;(2)PC与圆⊙O相切,理由见解析【分析】(1)连结BD,如图,根据圆周角定理由AB为直径得∠ACB=90°,则可利用勾股定理计算出AC=8;由DC平分∠ACB得∠ACD=∠BCD=45°,根据圆周角定理得∠DAB=∠DBA=45°,则△ADB为等腰直角三角形,由勾股定理即可得出AD的长;

(2)连结OC,由PC=PE得∠PCE=∠PEC,利用三角形外角性质得∠PEC=∠EAC+∠ACE=∠EAC+45°,加上∠CAB=90°﹣∠ABC,∠ABC=∠OCB,于是可得到∠PCE=90°﹣∠OCB+45°=90°﹣(∠OCE+45°)+45°,则∠OCE+∠PCE=90°,于是根据切线的判定定理可得PC为⊙O的切线.【详解】(1)连结BD,如图1所示,

∵AB为直径,∴∠ACB=90°,在Rt△ACB中,AB=10cm,BC=6cm,∴AC==8(cm);∵DC平分∠ACB,∴∠ACD=∠BCD=45°,∴∠DAB=∠DBA=45°∴△ADB为等腰直角三角形,∴AD=AB=(cm);(2)PC与圆⊙O相切.理由如下:连结OC,如图2所示:

∵PC=PE,∴∠PCE=∠PEC,∵∠PEC=∠EAC+∠ACE=∠EAC+45°,而∠CAB=90°﹣∠ABC,∠ABC=∠OCB,∴∠PCE=90°﹣∠OCB+45°=90°﹣(∠OCE+45°)+45°,∴∠OCE+∠PCE=90°,即∠PCO=90°,∴OC⊥PC,∴PC为⊙O的切线.本题考查了切线的性质和判定,切线长定理,圆周角定理,是圆的综合题,综合性比较强,难度适中,熟练掌握直线与圆的位置关系的判定方法是解题的关键.20、-【分析】将各特殊角的三角函数值代入即可得出答案.【详解】解:原式=2×﹣+﹣×1=-此题考查特殊角的三角函数值,属于基础题,熟练记忆一些特殊角的三角函数值是关键.21、(1)见解析;(2)见解析【分析】(1)根据已知条件证明BE=DF,BE∥DF,从而得出四边形DFBE是平行四边形,即可证明DE∥BF,

(2)先证明DE=BE,再根据邻边相等的平行四边形是菱形,从而得出结论.【详解】证明:(1)∵四边形ABCD是平行四边形,

∴AB∥CD,AB=CD.

∵点E、F分别是AB、CD的中点,

∴BE=AB,DF=CD.

∴BE=DF,BE∥DF,

∴四边形DFBE是平行四边形,

∴DE∥BF;

(2)∵∠G=90°,AG∥BD,AD∥BG,

∴四边形AGBD是矩形,

∴∠ADB=90°,

在Rt△ADB中

∵E为AB的中点,

∴AE=BE=DE,

∵四边形DFBE是平行四边形,

∴四边形DEBF是菱形.本题主要考查了平行四边形的性质、菱形的判定,直角三角形的性质:在直角三角形中斜边中线等于斜边一半,比较综合,难度适中.22、(1)开通隧道前,汽车从A地到B地大约要走136.4千米;(2)汽车从A地到B地比原来少走的路程为27.2千米【分析】(1)过点C作AB的垂线CD,垂足为D,在直角△ACD中,解直角三角形求出CD,进而解答即可;(2)在直角△CBD中,解直角三角形求出BD,再求出AD,进而求出汽车从A地到B地比原来少走多少路程.【详解】解:(1)过点C作AB的垂线CD,垂足为D,∵AB⊥CD,sin30°=,BC=80千米,∴CD=BC•sin30°=80×(千米),AC=(千米),AC+BC=80+40≈40×1.41+80=136.4(千米),答:开通隧道前,汽车从A地到B地大约要走136.4千米;(2)∵cos30°=,BC=80(千米),∴BD=BC•cos30°=80×(千米),∵tan45°=,CD=40(千米),∴AD=(千米),∴AB=AD+BD=40+40≈40+40×1.73=109.2(千米),∴汽车从A地到B地比原来少走多少路程为:AC+BC﹣AB=136.4﹣109.2=27.2(千米).答:汽车从A地到B地比原来少走的路程为27.2千米.本题考查了勾股定理的运用以及解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.23、1.05里【分析】首先根据

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论