




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列说法正确的是()A.为了了解长沙市中学生的睡眠情况,应该采用普查的方式B.某种彩票的中奖机会是1%,则买111张这种彩票一定会中奖C.若甲组数据的方差s甲2=1.1,乙组数据的方差s乙2=1.2,则乙组数据比甲组数据稳定D.一组数据1,5,3,2,3,4,8的众数和中位数都是32.剪纸是中国特有的民间艺术.在如图所示的四个剪纸图案中.既是轴对称图形又是中心对称图形的是()A. B. C. D.3.图1是一个底面为正方形的直棱柱,现将图1切割成图2的几何体,则图2的俯视图是()A. B. C. D.4.涞水县某种植基地2018年蔬菜产量为100吨,预计2020年蔬菜产量达到120吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A. B.C. D.5.如图,P为⊙O外一点,PA、PB分别切⊙O于点A、B,CD切⊙O于点E,分别交PA、PB于点C、D,若PA=6,则△PCD的周长为()A.8 B.6 C.12 D.106.若将四根木条钉成的矩形木框变形为平行四边形ABCD的形状,并使其面积为矩形面积的一半,则这个平行四边形的一个最小内角为()A.30 B.45 C.60 D.907.如图,已知△ABC的三个顶点均在格点上,则cosA的值为()A. B. C. D.8.通过计算几何图形的面积可表示代数恒等式,图中可表示的代数恒等式是()A. B.C. D.9.方程的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.有一个实数根 D.没有实数根10.在中,,,,那么的值等于()A. B. C. D.11.如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结论:;;;,其中正确的是()A. B. C. D.12.下列图形中,既是中心对称图形,又是轴对称图形的是()A. B. C. D.二、填空题(每题4分,共24分)13.在△ABC中,∠C=90°,若tanA=,则sinB=______.14.在国家政策的宏观调控下,某市的商品房成交均价由去年10月份的7000元/m2下降到12月份的5670元/m2,则11、12两月平均每月降价的百分率是_____.15.如图,在△ABC中,∠C=90°,∠A=α,AC=20,请用含α的式子表示BC的长___________.16.如图,已知二次函数的图象与轴交于两点(点在点的左侧),与轴交于点为该二次函数在第一象限内的一点,连接,交于点,则的最大值为__________.17.已知中,,交于,且,,,,则的长度为________.18.如图,在直角坐标系中,已知点,,,,对述续作旋转变换,依次得、、、...,则的直角顶点的坐标为________.三、解答题(共78分)19.(8分)已知二次函数.用配方法求该二次函数图象的顶点坐标;在所给坐标系中画出该二次函数的图象,并直接写出当时自变量的取值范围.20.(8分)如图,在矩形中,,为边上一点,把沿直线折叠,顶点折叠到,连接与交于点,连接与交于点,若.(1)求证:;(2)当时,,求的长;(3)连接,直接写出四边形的形状:.当时,并求的值.21.(8分)如图,已知△ABC中,∠ACB=90°,AC=4,BC=3,点M、N分别是边AC、AB上的动点,连接MN,将△AMN沿MN所在直线翻折,翻折后点A的对应点为A′.(1)如图1,若点A′恰好落在边AB上,且AN=AC,求AM的长;(2)如图2,若点A′恰好落在边BC上,且A′N∥AC.①试判断四边形AMA′N的形状并说明理由;②求AM、MN的长;(3)如图3,设线段NM、BC的延长线交于点P,当且时,求CP的长.22.(10分)如图,在平面直角坐标系中,的顶点坐标分别为(6,4),(4,0),(2,0).(1)在轴左侧,以为位似中心,画出,使它与的相似比为1:2;(2)根据(1)的作图,=.23.(10分)已知二次函数y=(x-1)2+n的部分点坐标如下表所示:(1)求该二次函数解析式;(2)完成上表,并在平面直角坐标系中画出函数图象24.(10分)某中学对全校学生进行文明礼仪知识测试,为了解测试结果,随机抽取部分学生的成绩进行分析,将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图(不完整).请你根据图中所给的信息解答下列问题:(1)请将以上两幅统计图补充完整;(2)若“一般”和“优秀”均被视为达标成绩,则该校被抽取的学生中有人达标;(3)若该校学生有1200人,请你估计此次测试中,全校达标的学生有多少人?25.(12分)如图,二次函数的图象与轴交于点和点,与轴交于点,以为边在轴上方作正方形,点是轴上一动点,连接,过点作的垂线与轴交于点.(1)求该抛物线的函数关系表达式;(2)当点在线段(点不与重合)上运动至何处时,线段的长有最大值?并求出这个最大值;(3)在第四象限的抛物线上任取一点,连接.请问:的面积是否存在最大值?若存在,求出此时点的坐标;若不存在,请说明理由.26.工艺商场按标价销售某种工艺品时,每件可获利45元;并且进价50件工艺品与销售40件工艺品的价钱相同.(1)该工艺品每件的进价、标价分别是多少元?(2)若每件工艺品按(1)中求得的进价进货,标价售出,工艺商场每天可售出该工艺品100件.若每件工艺品降价1元,则每天可多售出该工艺品4件.问每件工艺品降价多少元出售,每天获得的利润最大?获得的最大利润是多少元?
参考答案一、选择题(每题4分,共48分)1、D【分析】根据抽样调查、概率、方差、中位数与众数的概念判断即可.【详解】A、为了解长沙市中学生的睡眠情况,应该采用抽样调查的方式,不符合题意;B、某种彩票的中奖机会是1%,则买111张这种彩票可能会中奖,不符合题意;C、若甲组数据的方差s甲2=1.1,乙组数据的方差s乙2=1.2,则甲组数据比乙组数据稳定,不符合题意;D、一组数据1,5,3,2,3,4,8的众数和中位数都是3,符合题意;故选:D.本题考查统计的相关概念,关键在于熟记概念.2、C【解析】根据轴对称图形的定义沿一条直线对折后,直线两旁部分完全重合的图形是轴对称图形,以及中心对称图形的定义分别判断即可得出答案.【详解】A.此图形沿一条直线对折后不能够完全重合,∴此图形不是轴对称图形,不是中心对称图形,故此选项错误;B.此图形沿一条直线对折后能够完全重合,∴此图形不是轴对称图形,不是中心对称图形,故此选项错误。C.此图形沿一条直线对折后能够完全重合,∴此图形是轴对称图形,旋转180∘能与原图形重合,是中心对称图形,故此选项正确;D.此图形沿一条直线对折后能够完全重合,旋转180°不能与原图形重合,∴此图形是轴对称图形,不是中心对称图形,故此选项错误。故选C此题考查轴对称图形和中心对称图形,难度不大3、D【分析】俯视图是从物体上面看到的图形,应把所看到的所有棱都表示在所得图形中.【详解】从上面看,图2的俯视图是正方形,有一条对角线.
故选:D.本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.4、A【分析】根据2020年的产量=2018年的产量×(1+年平均增长率)2,把相关数值代入即可.【详解】解:设该种植基地蔬菜产量的年平均增长率(百分数)为x,根据题意,得,故选A.此题考查了一元二次方程的应用(增长率问题).解题的关键在于理清题目的含义,找到2020年的产量的代数式,根据条件找准等量关系,列出方程.5、C【解析】由切线长定理可求得PA=PB,AC=CE,BD=ED,则可求得答案.【详解】∵PA、PB分别切⊙O于点A、B,CD切⊙O于点E,∴PA=PB=6,AC=EC,BD=ED,∴PC+CD+PD=PC+CE+DE+PD=PA+AC+PD+BD=PA+PB=6+6=12,即△PCD的周长为12,故选:C.本题主要考查切线的性质,利用切线长定理求得PA=PB、AC=CE和BD=ED是解题的关键.6、A【分析】将四根木条钉成的矩形木框变形为平行四边形ABCD的形状,并使其面积为矩形面积的一半,则这个平行四边形的长度与矩形相等的一条边上的高为矩形的一半,即AB=2AE.【详解】解:将四根木条钉成的矩形木框变形为平行四边形ABCD的形状,并使其面积为矩形面积的一半,平行四边形ABCD是原矩形变化而成,∴FG=BC,FH=2AE.又∵HF=AB,∴AB=2AE,在Rt△ABE中,AB=2AE,∠B=30°.故选:A.本题考查了矩形各内角为90的性质,平行四边形面积的计算方法,特殊角的三角函数,本题中利用特殊角的正弦函数是解题的关键.7、D【详解】过B点作BD⊥AC,如图,由勾股定理得,AB=,AD=,cosA===,故选D.8、A【分析】根据阴影部分面积的两种表示方法,即可解答.【详解】图1中阴影部分的面积为:,图2中的面积为:,则故选:A.本题考查了平方差公式的几何背景,解决本题的关键是表示阴影部分的面积.9、A【分析】计算判别式即可得到答案.【详解】∵=∴方程有两个不相等的实数根,故选:A.此题考查一元二次方程根的情况,正确掌握判别式的三种情况即可正确解题.10、A【解析】在直角三角形中,锐角的正切等于对边比邻边,由此可得.【详解】解:如图,.故选:A.本题主要考查了锐角三角函数中的正切,熟练掌握正切的表示是解题的关键.11、C【解析】试题解析:①和的底分别相等,高也相等,所以它们的面积也相等,故正确.②和的底分别相等,高也相等,所以它们的面积也相等,并不是倍的关系.故错误.③由于是的中点,所以和的相似比为,所以它们的面积之比为.故错误.④和的底相等,高和则是的关系,所以它们的面积之比为.故正确.综上所述,符合题意的有①和④.故选C.12、B【解析】根据中心对称图形的定义“是指在平面内,把一个图形绕着某个点旋转,如果旋转后的图形能与原来的图形重合的图形”和轴对称图形的定义“是指平面内,一个图形沿着一条直线折叠,直线两旁的部分能够完全重合的图形”逐项判断即可.【详解】A、既不是中心对称图形,也不是轴对称图形,此项不符题意B、既是中心对称图形,又是轴对称图形,此项符合题意C、是轴对称图形,但不是中心对称图形,此项不符题意D、是中心对称图形,但不是轴对称图形,此项不符题意故选:B.本题考查了中心对称图形的定义和轴对称图形的定义,这是常考点,熟记定义是解题关键.二、填空题(每题4分,共24分)13、【解析】分析:直接根据题意表示出三角形的各边,进而利用锐角三角函数关系得出答案.详解:如图所示:∵∠C=90°,tanA=,∴设BC=x,则AC=2x,故AB=x,则sinB=.故答案为:.点睛:此题主要考查了锐角三角函数关系,正确表示各边长是解题关键.14、10%【分析】设11、12两月平均每月降价的百分率是x,那么11月份的房价为7000(1−x),12月份的房价为7000(1−x)2,然后根据12月份的价格即可列出方程解决问题.【详解】解:设11、12两月平均每月降价的百分率是x,由题意,得:7000(1﹣x)2=5670,解得:x1=0.1=10%,x2=1.9(不合题意,舍去).故答案为:10%.本题是一道一元二次方程的应用题,与实际生活结合比较紧密,正确理解题意,找到关键的数量关系,然后列出方程是解题的关键.15、【分析】在直角三角形中,角的正切值等于其对边与邻边的比值,据此求解即可.【详解】在Rt△ABC中,∵∠A=α,AC=20,∴=,即BC=.故答案为:.本题主要考查了三角函数解直角三角形,熟练掌握相关概念是解题关键.16、【分析】由抛物线的解析式易求出点A、B、C的坐标,然后利用待定系数法求出直线BC的解析式,过点P作PQ∥x轴交直线BC于点Q,则△PQK∽△ABK,可得,而AB易求,这样将求的最大值转化为求PQ的最大值,可设点P的横坐标为m,注意到P、Q的纵坐标相等,则可用含m的代数式表示出点Q的横坐标,于是PQ可用含m的代数式表示,然后利用二次函数的性质即可求解.【详解】解:对二次函数,令x=0,则y=3,令y=0,则,解得:,∴C(0,3),A(-1,0),B(4,0),设直线BC的解析式为:,把B、C两点代入得:,解得:,∴直线BC的解析式为:,过点P作PQ∥x轴交直线BC于点Q,如图,则△PQK∽△ABK,∴,设P(m,),∵P、Q的纵坐标相等,∴当时,,解得:,∴,又∵AB=5,∴.∴当m=2时,的最大值为.故答案为:.本题考查了二次函数与坐标轴的交点、二次函数的性质和二次函数图象上点的坐标特征、待定系数法求函数的解析式、相似三角形的判定和性质等知识,难度较大,属于填空题中的压轴题,解题的关键是利用相似三角形的判定和性质将所求的最大值转化为求PQ的最大值、熟练掌握二次函数的性质.17、【分析】过B作BF⊥CD于F,BG⊥BF交AD的延长线于G,则四边形DGBF是矩形,由矩形的性质得到BG=DF,DG=FB.由△BFC是等腰直角三角形,得到FC=BF=1.设DE=9x,则CE=7x,EF=CE-FC=7x-1,BG=DF=16x-1,DG=FB=1.在Rt△ADC和Rt△AGB中,由AC=AB,利用勾股定理得到AD=16x-1.证明△FEB∽△DEA,根据相似三角形的对应边成比例可求出x的值,进而得到AD,DE的长.在Rt△ADE中,由勾股定理即可得出结论.【详解】如图,过B作BF⊥CD于F,BG⊥BF交AD的延长线于G,∴四边形DGBF是矩形,∴BG=DF,DG=FB.∵∠BCD=45°,∴△BFC是等腰直角三角形.∵BC=,∴FC=BF=1.设DE=9x,则CE=7x,EF=CE-FC=7x-1,BG=DF=16x-1,DG=FB=1.在Rt△ADC和Rt△AGB中,∵AC=AB,∴,∴,解得:AD=16x-1.∵FB∥AD,∴△FEB∽△DEA,∴,∴,∴18x1-16x+1=0,解得:x=或x=.当x=时,7x-1<0,不合题意,舍去,∴x=,∴AD=16x-1=6,DE=9x=,∴AE=.故答案为:.本题考查了矩形的判定与性质以及相似三角形的判定与性质.求出AD=16x-1是解答本题的关键.18、(1200,0)【分析】根据题目提供的信息,可知旋转三次为一个循环,图中第三次和第四次的直角顶点的坐标相同,由①→③时直角顶点的坐标可以求出来,从而可以解答本题.【详解】由题意可得,
△OAB旋转三次和原来的相对位置一样,点A(-3,0)、B(0,4),
∴OA=3,OB=4,∠BOA=90°,∴,∴旋转到第三次时的直角顶点的坐标为:(12,0),
∵301÷3=100…1
∴旋转第301次的直角顶点的坐标为:(1200,0),
故答案为:(1200,0).本题考查了坐标与图形变化-旋转,是对图形变化规律,观察出每三次旋转为一个循环组依次循环,并且下一组的第一个直角三角形与上一组的最后一个直角三角形的直角顶点重合是解题的关键.三、解答题(共78分)19、(1)顶点坐标为;(2)图象见解析,由图象得当时.【分析】(1)用配方法将函数一般式转化为顶点式即可;(2)采用列表描点法画出二次函数图象即可,根据函数图象,即可判定当时自变量的取值范围.【详解】..顶点坐标为列表:············图象如图所示由图象得当时.此题主要考查二次函数顶点式以及图象的性质,熟练掌握,即可解题.20、(1)见解析;(2);(3)菱形,24【分析】(1)由题意可得∠AEB+∠CED=90°,且∠ECD+∠CED=90°,可得∠AEB=∠ECD,且∠A=∠D=90°,则可证△ABE∽△DEC;
(2)设AE=x,则DE=13-x,由相似三角形的性质可得,即:,可求x的值,即可得DE=9,根据勾股定理可求CE的长;
(3)由折叠的性质可得CP=C'P,CQ=C'Q,∠C'PQ=∠CPQ,∠BC'P=∠BCP=90°,由平行线的性质可得∠C'PQ=∠CQP=∠CPQ,即可得CQ=CP=C'Q=C'P,则四边形C'QCP是菱形,通过证△C'EQ∽△EDC,可得,即可求CE•EQ的值.【详解】证明:(1)∵CE⊥BE,
∴∠BEC=90°,
∴∠AEB+∠CED=90°,
又∵∠ECD+∠CED=90°,
∴∠AEB=∠ECD,
又∵∠A=∠D=90°,
∴△ABE∽△DEC
(2)设AE=x,则DE=13-x,
由(1)知:△ABE∽△DEC,
∴,即:
∴x2-13x+36=0,
∴x1=4,x2=9,
又∵AE<DE
∴AE=4,DE=9,
在Rt△CDE中,由勾股定理得:
(3)如图,
∵折叠,
∴CP=C'P,CQ=C'Q,∠C'PQ=∠CPQ,∠BC'P=∠BCP=90°,
∵CE⊥BC',∠BC'P=90°,
∴CE∥C'P,
∴∠C'PQ=∠CQP,
∴∠CQP=∠CPQ,
∴CQ=CP,
∴CQ=CP=C'Q=C'P,
∴四边形C'QCP是菱形,
故答案为:菱形
∵四边形C'QCP是菱形,
∴C'Q∥CP,C'Q=CP,∠EQC'=∠ECD
又∵∠C'EQ=∠D=90°
∴△C'EQ∽△EDC
∴
即:CE•EQ=DC•C'Q=6×4=24本题是相似形综合题,考查了矩形的性质,菱形的判定和性质,折叠的性质,相似三角形的判定和性质,勾股定理等性质,灵活运用相关的性质定理、综合运用知识是解题的关键.21、(1);(2)①菱形,理由见解析;②AM=,MN=;(3)1.【分析】(1)利用相似三角形的性质求解即可.(2)①根据邻边相等的平行四边形是菱形证明即可.②连接AA′交MN于O.设AM=MA′=x,由MA′∥AB,可得=,由此构建方程求出x,解直角三角形求出OM即可解决问题.(3)如图3中,作NH⊥BC于H.想办法求出NH,CM,利用相似三角形,确定比例关系,构建方程解决问题即可.【详解】解:(1)如图1中,在Rt△ABC中,∵∠C=90°,AC=4,BC=3,∴AB=,∵∠A=∠A,∠ANM=∠C=90°,∴△ANM∽△ACB,∴=,∵AN=AC∴=,∴AM=.(2)①如图2中,∵NA′∥AC,∴∠AMN=∠MNA′,由翻折可知:MA=MA′,∠AMN=∠NMA′,∴∠MNA′=∠A′MN,∴A′N=A′M,∴AM=A′N,∵AM∥A′N,∴四边形AMA′N是平行四边形,∵MA=MA′,∴四边形AMA′N是菱形.②连接AA′交MN于O.设AM=MA′=x,∵MA′∥AB,∴∴=,∴=,解得x=,∴AM=∴CM=,∴CA′===,∴AA′===,∵四边形AMA′N是菱形,∴AA′⊥MN,OM=ON,OA=OA′=,∴OM===,∴MN=2OM=.(3)如图3中,作NH⊥BC于H.∵NH∥AC,∴△ABC∽△NBH∴==∴==∴NH=,BH=,∴CH=BC﹣BH=3﹣=,∴AM=AC=,∴CM=AC﹣AM=4﹣=,∵CM∥NH,∴△CPM∽△HPN∴=,∴=,∴PC=1.本题考查了相似三角形的综合应用,涉及相似三角形的判定与性质、菱形的判定、勾股定理等知识点,综合性较强,难度较大,解题的关键是综合运用上述知识点.22、(1)见解析;(2)-2【分析】(1)连接AO并延长至,使,同理作出点B,C的对应点,再顺次连接即可;(2)先根据图象找出三点的坐标,再利用正切函数的定义求解即可.【详解】(1)如图;(2)根据题意可得出,,,设与x轴的夹角为,∴.本题考查的知识点是在坐标系中画位似图形,掌握位似图形的关于概念是解此题的关键.23、(1)y=(x-1)2+1;(2)填表见解析,图象见解析.【分析】(1)将(2,2)代入y=(x-1)2+n求得n的值即可得解;(2)再由函数解析式计算出表格内各项,然后再画出函数图象即可.【详解】(1)∵二次函数y=(x-1)2+n,当x=2时,y=2,∴2=(2-1)2+n,解得n=1,∴该二次函数的解析式为y=(x-1)2+1.(2)填表得x⋯⋯-10123⋯⋯y⋯⋯52125⋯⋯画出函数图象如图:本题考查了待定系数法求二次函数解析式,二次函数的图象与性质,二次函数图象上点的坐标特征,正确求出函数解析式是解题的关键.24、(1)详见解析;(2)1;(3)10【分析】(1)成绩一般的学生占的百分比=1﹣成绩优秀的百分比﹣成绩不合格的百分比,测试的学生总数=不合格的人数÷不合格人数的百分比,继而求出成绩优秀的人数,然后补全图形即可.(2)将成绩一般和优秀的人数相加即可;(3)该校学生文明礼仪知识测试中成绩达标的人数=1200×成绩达标的学生所占的百分比.【详解】(1)成绩一般的学生占的百分比=1﹣20%﹣50%=30%,测试的学生总数=24÷20%=120人,成绩优秀的人数=120×50%=60人,所补充图形如下所示:(2)该校被抽取的学生中达标的人数=36+60=1.(3)1200×(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026版高考化学一轮总复习真题演练第四章非金属及其化合物第15讲氯及其重要化合物
- 2025客户经理招聘题库及答案
- 2024-2025学年黑龙江省牡丹江第二高级中学高一(下)期末数学试卷(含解析)
- 2025年大学生安全竞赛题库答案
- 2025年smt销售考试试题及答案
- 2025年知识竞赛题库数理化生
- 2025年大方杯国学知识竞赛题库
- 2025年教师证知识竞赛题库
- 交叉作业安全管理协议(模板)
- 2025年改口费试题及答案
- 4.2 诱导公式及恒等变化(精练)(题组版)(解析版)-2026年高考数学一轮复习《一隅三反》系列(新高考新题型)
- 2025年中国铁路呼和浩特局集团有限公司招聘高校毕业生406人(三内蒙古)笔试历年参考题库附带答案详解
- 临床检验 pcr 试题答案2025版
- 分级护理管理制度培训
- 庆祝活动证件管理办法
- 全国博士后流动站一览表
- 消化科常见疾病护理常规
- 2025年甘肃平凉中考数学试卷真题及答案详解(精校打印版)
- 法兰螺栓紧固培训课件
- 2025年高考山东卷物理试题讲评及备考策略指导(课件)
- 调度督办事项管理制度
评论
0/150
提交评论