




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题08解三角形7种常见考法归类知识五年考情(2021-2025)命题趋势知识1正余弦定理(5年5考)考点01利用正余弦定理解三角形2025·天津2025·全国二卷2024·天津2023·上海2023·天津2023·全国乙卷2022·天津2021·全国甲卷2021·上海2021·天津1.三角形正余弦定理求基本量运算是高考必考知识点,边角转化,最值问题与不等式相结合等都是高考高频考点2.解三角形在高考解答题中,周长面积问题是高考中常考题型,难度一般,容易出现结构不良试题以及与三线相结合,注重常规方法以及常规技巧考点02正余弦定理综合2024·全国甲卷2023·北京2022·全国乙卷考点03三角形的面积问题2025·全国一卷2024·新课标Ⅰ卷2024·北京2023·全国甲卷2023·全国乙卷2023·新课标Ⅱ卷2022·新高考全国Ⅱ卷2022·浙江2021·全国乙卷2021·新高考全国Ⅱ卷考点04三角形的周长问题2024·新课标Ⅱ卷2022·北京2022·全国乙卷2021·北京知识2解三角形的应用(5年5考)考点05正、余弦定理在几何中的应用2025·北京2023·新课标Ⅰ卷2023·全国甲卷2022·全国甲卷2021·浙江2021·新高考全国Ⅰ卷考点06解三角形的最值问题2022·新高考全国Ⅰ卷考点07解三角形的实际应用2024·上海2021·全国甲卷2021·全国乙卷考点01利用正余弦定理解三角形1.(2025·全国二卷·高考真题)在中,,,,则(
)A. B. C. D.2.(2021·全国甲卷·高考真题)在中,已知,,,则(
)A.1 B. C. D.33.(2023·上海·高考真题)在中,已知,,,则.4.(2023·全国乙卷·高考真题)在中,内角的对边分别是,若,且,则(
)A. B. C. D.5.(2023·天津·高考真题)在中,角所对的边分别是.已知.(1)求的值;(2)求的值;(3)求的值.6.(2024·天津·高考真题)在中,角所对的边分别为,已知.(1)求的值;(2)求的值;(3)求的值.7.(2025·天津·高考真题)在中,角的对边分别为.已知,,.(1)求A的值;(2)求c的值;(3)求的值.8.(2021·上海·高考真题)已知A、B、C为的三个内角,a、b、c是其三条边,﹒(1)若,求b、c;(2)若,求c.9.(2021·天津·高考真题)在,角所对的边分别为,已知,.(I)求a的值;(II)求的值;(III)求的值.10.(2022·天津·高考真题)在中,角A、B、C所对的边分别为a,b,c.已知.(1)求的值;(2)求的值;(3)求的值.考点02正余弦定理综合11.(2024·全国甲卷·高考真题)在中,内角所对的边分别为,若,,则(
)A. B. C. D.12.(2023·北京·高考真题)在中,,则(
)A. B. C. D.13.(2022·全国乙卷·高考真题)记的内角A,B,C的对边分别为a,b,c﹐已知.(1)若,求C;(2)证明:考点03三角形的面积问题14.(2021·全国乙卷·高考真题)记的内角A,B,C的对边分别为a,b,c,面积为,,,则.15.(2021·新高考全国Ⅱ卷·高考真题)在中,角、、所对的边长分别为、、,,..(1)若,求的面积;(2)是否存在正整数,使得为钝角三角形?若存在,求出的值;若不存在,说明理由.16.(2022·浙江·高考真题)在中,角A,B,C所对的边分别为a,b,c.已知.(1)求的值;(2)若,求的面积.17.(2022·新高考全国Ⅱ卷·高考真题)记的内角A,B,C的对边分别为a,b,c,分别以a,b,c为边长的三个正三角形的面积依次为,已知.(1)求的面积;(2)若,求b.18.(2022·浙江·高考真题)我国南宋著名数学家秦九韶,发现了从三角形三边求面积的公式,他把这种方法称为“三斜求积”,它填补了我国传统数学的一个空白.如果把这个方法写成公式,就是,其中a,b,c是三角形的三边,S是三角形的面积.设某三角形的三边,则该三角形的面积.19.(2023·全国乙卷·高考真题)在中,已知,,.(1)求;(2)若D为BC上一点,且,求的面积.20.(2024·新课标Ⅰ卷·高考真题)记的内角A、B、C的对边分别为a,b,c,已知,(1)求B;(2)若的面积为,求c.21.(2023·全国甲卷·高考真题)记的内角的对边分别为,已知.(1)求;(2)若,求面积.22.(2024·北京·高考真题)在中,内角的对边分别为,为钝角,,.(1)求;(2)从条件①、条件②、条件③这三个条件中选择一个作为已知,使得存在,求的面积.条件①:;条件②:;条件③:.注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.23.(2023·新课标Ⅱ卷·高考真题)记的内角的对边分别为,已知的面积为,为中点,且.(1)若,求;(2)若,求.24.(2025·全国一卷·高考真题)已知的面积为,若,则(
)A. B.C. D.考点04三角形的周长问题25.(2022·北京·高考真题)在中,.(1)求;(2)若,且的面积为,求的周长.26.(2021·北京·高考真题)在中,,.(1)求;(2)再从条件①、条件②、条件③这三个条件中选择一个作为已知,使存在且唯一确定,求边上中线的长.条件①:;条件②:的周长为;条件③:的面积为;27.(2024·新课标Ⅱ卷·高考真题)记的内角A,B,C的对边分别为a,b,c,已知.(1)求A.(2)若,,求的周长.28.(2022·全国乙卷·高考真题)记的内角的对边分别为,已知.(1)证明:;(2)若,求的周长.考点05正、余弦定理在几何中的应用29.(2023·新课标Ⅰ卷·高考真题)已知在中,.(1)求;(2)设,求边上的高.30.(2023·全国甲卷·高考真题)在中,,的角平分线交BC于D,则.31.(2022·全国甲卷·高考真题)已知中,点D在边BC上,.当取得最小值时,.32.(2021·浙江·高考真题)在中,,M是的中点,,则,.33.(2025·北京·高考真题)在中,.(1)求c的值;(2)再从条件①、条件②、条件③这三个条件中选择一个作为已知,使得存在,求BC边上的高.条件①:;条件②:;条件③:的面积为.34.(2021·新高考全国Ⅰ卷·高考真题)记是内角,,的对边分别为,,.已知,点在边上,.(1)证明:;(2)若,求.考点06解三角形的最值问题35.(2022·新高考全国Ⅰ卷·高考真题)记的内角A,B,C的对边分别为a,b,c,已知.(1)若,求B;(2)求的最小值.考点07解三角形的实际应用36.(2021·全国乙卷·高考真题)魏晋时刘徽撰写的《海岛算经》是有关测量的数学著作,其中第一题是测海岛的高.如图,点,,在水平线上,和是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,称为“表距”,和都称为“表目距”,与的差称为“表目距的差”则海岛的高(
)A.表高 B.表高C.表距 D.表距37.(2021·全国甲卷·高考真题)2020年12月8日,中国和尼泊尔联合公布珠穆朗玛峰最新高程为8848.86(单位:m),三角高程测量法是珠峰高程测量方法之一.如图是三角高程测量法的一个示意图,现有A,B,C三点,且A,B,C在同一水平面上的投影满足,.由C点测得B点的仰角为,与的差为100;由B点测得A点的仰角为,则A,C两点到水平面的高度差约为()(
)A.346 B.373 C.446 D.47338.(2024·上海·高考真题)已知点B在点C正北方向,点D在点C的正东方向,,存在点A满足,则(精确到0.1度)
专题08解三角形7种常见考法归类知识五年考情(2021-2025)命题趋势知识1正余弦定理(5年5考)考点01利用正余弦定理解三角形2025·天津2025·全国二卷2024·天津2023·上海2023·天津2023·全国乙卷2022·天津2021·全国甲卷2021·上海2021·天津1.三角形正余弦定理求基本量运算是高考必考知识点,边角转化,最值问题与不等式相结合等都是高考高频考点2.解三角形在高考解答题中,周长面积问题是高考中常考题型,难度一般,容易出现结构不良试题以及与三线相结合,注重常规方法以及常规技巧考点02正余弦定理综合2024·全国甲卷2023·北京2022·全国乙卷考点03三角形的面积问题2025·全国一卷2024·新课标Ⅰ卷2024·北京2023·全国甲卷2023·全国乙卷2023·新课标Ⅱ卷2022·新高考全国Ⅱ卷2022·浙江2021·全国乙卷2021·新高考全国Ⅱ卷考点04三角形的周长问题2024·新课标Ⅱ卷2022·北京2022·全国乙卷2021·北京知识2解三角形的应用(5年5考)考点05正、余弦定理在几何中的应用2025·北京2023·新课标Ⅰ卷2023·全国甲卷2022·全国甲卷2021·浙江2021·新高考全国Ⅰ卷考点06解三角形的最值问题2022·新高考全国Ⅰ卷考点07解三角形的实际应用2024·上海2021·全国甲卷2021·全国乙卷考点01利用正余弦定理解三角形1.(2025·全国二卷·高考真题)在中,,,,则(
)A. B. C. D.【答案】A【分析】由余弦定理直接计算求解即可.【详解】由题意得,又,所以.故选:A2.(2021·全国甲卷·高考真题)在中,已知,,,则(
)A.1 B. C. D.3【答案】D【分析】利用余弦定理得到关于BC长度的方程,解方程即可求得边长.【详解】设,结合余弦定理:可得:,即:,解得:(舍去),故.故选:D.【点睛】利用余弦定理及其推论解三角形的类型:(1)已知三角形的三条边求三个角;(2)已知三角形的两边及其夹角求第三边及两角;(3)已知三角形的两边与其中一边的对角,解三角形.3.(2023·上海·高考真题)在中,已知,,,则.【答案】【分析】先利用余弦定理求得,再利用同角三角函数关系式求得.【详解】,A为的内角,.故答案为:.【点睛】本题考查余弦定理以及同角三角函数关系式的合理运用,是基础题.4.(2023·全国乙卷·高考真题)在中,内角的对边分别是,若,且,则(
)A. B. C. D.【答案】C【分析】首先利用正弦定理边化角,然后结合诱导公式和两角和的正弦公式求得的值,最后利用三角形内角和定理可得的值.【详解】由题意结合正弦定理可得,即,整理可得,由于,故,据此可得,则.故选:C.5.(2023·天津·高考真题)在中,角所对的边分别是.已知.(1)求的值;(2)求的值;(3)求的值.【答案】(1)(2)(3)【分析】(1)根据正弦定理即可解出;(2)根据余弦定理即可解出;(3)由正弦定理求出,再由平方关系求出,即可由两角差的正弦公式求出.【详解】(1)由正弦定理可得,,即,解得:;(2)由余弦定理可得,,即,解得:或(舍去).(3)由正弦定理可得,,即,解得:,而,所以都为锐角,因此,,.6.(2024·天津·高考真题)在中,角所对的边分别为,已知.(1)求的值;(2)求的值;(3)求的值.【答案】(1)(2)(3)【分析】(1),利用余弦定理即可得到方程,解出即可;(2)法一:求出,再利用正弦定理即可;法二:利用余弦定理求出,则得到;(3)法一:根据大边对大角确定为锐角,则得到,再利用二倍角公式和两角差的余弦公式即可;法二:直接利用二倍角公式和两角差的余弦公式即可.【详解】(1)设,,则根据余弦定理得,即,解得(负舍);则.(2)法一:因为为三角形内角,所以,再根据正弦定理得,即,解得,法二:由余弦定理得,因为,则(3)法一:因为,且,所以,由(2)法一知,因为,则,所以,则,.法二:,则,因为为三角形内角,所以,所以7.(2025·天津·高考真题)在中,角的对边分别为.已知,,.(1)求A的值;(2)求c的值;(3)求的值.【答案】(1)(2)(3)【分析】(1)由正弦定理化边为角再化简可求;(2)由余弦定理,结合(1)结论与已知代入可得关于的方程,求解可得,进而求得;(3)利用正弦定理先求,再由二倍角公式分别求,由两角和的正弦可得.【详解】(1)已知,由正弦定理,得,显然,得,由,故;(2)由(1)知,且,,由余弦定理,则,解得(舍去),故;(3)由正弦定理,且,得,且,则为锐角,故,故,且;故.8.(2021·上海·高考真题)已知A、B、C为的三个内角,a、b、c是其三条边,﹒(1)若,求b、c;(2)若,求c.【答案】(1)1,;(2)﹒【分析】(1)由已知利用正弦定理即可求解的值;利用余弦定理即可求解的值.(2)根据已知利用两角差的余弦公式,同角三角函数基本关系式可求得、的值,进而根据正弦定理可得的值.【详解】(1)∵,由正弦定理得,又,可得,由于,可得.(2)∵,0<C<π,∴,C>>A,.∵,∴,又,可解得或(舍),由正弦定理,可得.9.(2021·天津·高考真题)在,角所对的边分别为,已知,.(I)求a的值;(II)求的值;(III)求的值.【答案】(I);(II);(III)【分析】(I)由正弦定理可得,即可求出;(II)由余弦定理即可计算;(III)利用二倍角公式求出的正弦值和余弦值,再由两角差的正弦公式即可求出.【详解】(I)因为,由正弦定理可得,,;(II)由余弦定理可得;(III),,,,所以.10.(2022·天津·高考真题)在中,角A、B、C所对的边分别为a,b,c.已知.(1)求的值;(2)求的值;(3)求的值.【答案】(1)(2)(3)【分析】(1)根据余弦定理以及解方程组即可求出;(2)由(1)可求出,再根据正弦定理即可解出;(3)先根据二倍角公式求出,再根据两角差的正弦公式即可求出.【详解】(1)因为,即,而,代入得,解得:.(2)由(1)可求出,而,所以,又,所以.(3)因为,所以,故,又,所以,,而,所以,故.考点02正余弦定理综合11.(2024·全国甲卷·高考真题)在中,内角所对的边分别为,若,,则(
)A. B. C. D.【答案】C【分析】利用正弦定理得,再利用余弦定理有,由正弦定理得到的值,最后代入计算即可.【详解】因为,则由正弦定理得.由余弦定理可得:,即:,根据正弦定理得,所以,因为为三角形内角,则,则.故选:C.12.(2023·北京·高考真题)在中,,则(
)A. B. C. D.【答案】B【分析】利用正弦定理的边角变换与余弦定理即可得解.【详解】因为,所以由正弦定理得,即,则,故,又,所以.故选:B.13.(2022·全国乙卷·高考真题)记的内角A,B,C的对边分别为a,b,c﹐已知.(1)若,求C;(2)证明:【答案】(1);(2)证明见解析.【分析】(1)根据题意可得,,再结合三角形内角和定理即可解出;(2)由题意利用两角差的正弦公式展开得,再根据正弦定理,余弦定理化简即可证出.【详解】(1)由,可得,,而,所以,即有,而,显然,所以,,而,,所以.(2)由可得,,再由正弦定理可得,,然后根据余弦定理可知,,化简得:,故原等式成立.考点03三角形的面积问题14.(2021·全国乙卷·高考真题)记的内角A,B,C的对边分别为a,b,c,面积为,,,则.【答案】【分析】由三角形面积公式可得,再结合余弦定理即可得解.【详解】由题意,,所以,所以,解得(负值舍去).故答案为:.15.(2021·新高考全国Ⅱ卷·高考真题)在中,角、、所对的边长分别为、、,,..(1)若,求的面积;(2)是否存在正整数,使得为钝角三角形?若存在,求出的值;若不存在,说明理由.【答案】(1);(2)存在,且.【分析】(1)由正弦定理可得出,结合已知条件求出的值,进一步可求得、的值,利用余弦定理以及同角三角函数的基本关系求出,再利用三角形的面积公式可求得结果;(2)分析可知,角为钝角,由结合三角形三边关系可求得整数的值.【详解】(1)因为,则,则,故,,,所以,为锐角,则,因此,;(2)显然,若为钝角三角形,则为钝角,由余弦定理可得,解得,则,由三角形三边关系可得,可得,,故.16.(2022·浙江·高考真题)在中,角A,B,C所对的边分别为a,b,c.已知.(1)求的值;(2)若,求的面积.【答案】(1);(2).【分析】(1)先由平方关系求出,再根据正弦定理即可解出;(2)根据余弦定理的推论以及可解出,即可由三角形面积公式求出面积.【详解】(1)由于,,则.因为,由正弦定理知,则.(2)因为,由余弦定理,得,即,解得,而,,所以的面积.17.(2022·新高考全国Ⅱ卷·高考真题)记的内角A,B,C的对边分别为a,b,c,分别以a,b,c为边长的三个正三角形的面积依次为,已知.(1)求的面积;(2)若,求b.【答案】(1)(2)【分析】(1)先表示出,再由求得,结合余弦定理及平方关系求得,再由面积公式求解即可;(2)由正弦定理得,即可求解.【详解】(1)由题意得,则,即,由余弦定理得,整理得,则,又,则,,则;(2)由正弦定理得:,则,则,.18.(2022·浙江·高考真题)我国南宋著名数学家秦九韶,发现了从三角形三边求面积的公式,他把这种方法称为“三斜求积”,它填补了我国传统数学的一个空白.如果把这个方法写成公式,就是,其中a,b,c是三角形的三边,S是三角形的面积.设某三角形的三边,则该三角形的面积.【答案】.【分析】根据题中所给的公式代值解出.【详解】因为,所以.故答案为:.19.(2023·全国乙卷·高考真题)在中,已知,,.(1)求;(2)若D为BC上一点,且,求的面积.【答案】(1);(2).【分析】(1)首先由余弦定理求得边长的值为,然后由余弦定理可得,最后由同角三角函数基本关系可得;(2)由题意可得,则,据此即可求得的面积.【详解】(1)由余弦定理可得:,则,,.(2)由三角形面积公式可得,则.20.(2024·新课标Ⅰ卷·高考真题)记的内角A、B、C的对边分别为a,b,c,已知,(1)求B;(2)若的面积为,求c.【答案】(1)(2)【分析】(1)由余弦定理、平方关系依次求出,最后结合已知得的值即可;(2)首先求出,然后由正弦定理可将均用含有的式子表示,结合三角形面积公式即可列方程求解.【详解】(1)由余弦定理有,对比已知,可得,因为,所以,从而,又因为,即,注意到,所以.(2)由(1)可得,,,从而,,而,由正弦定理有,从而,由三角形面积公式可知,的面积可表示为,由已知的面积为,可得,所以.21.(2023·全国甲卷·高考真题)记的内角的对边分别为,已知.(1)求;(2)若,求面积.【答案】(1)(2)【分析】(1)根据余弦定理即可解出;(2)由(1)可知,只需求出即可得到三角形面积,对等式恒等变换,即可解出.【详解】(1)因为,所以,解得:.(2)由正弦定理可得,变形可得:,即,而,所以,又,所以,故的面积为.22.(2024·北京·高考真题)在中,内角的对边分别为,为钝角,,.(1)求;(2)从条件①、条件②、条件③这三个条件中选择一个作为已知,使得存在,求的面积.条件①:;条件②:;条件③:.注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.【答案】(1);(2)选择①无解;选择②和③△ABC面积均为.【分析】(1)利用正弦定理即可求出答案;(2)选择①,利用正弦定理得,结合(1)问答案即可排除;选择②,首先求出,再代入式子得,再利用两角和的正弦公式即可求出,最后利用三角形面积公式即可;选择③,首先得到,再利用正弦定理得到,再利用两角和的正弦公式即可求出,最后利用三角形面积公式即可;【详解】(1)由题意得,因为为钝角,则,则,则,解得,因为为钝角,则.(2)选择①,则,因为,则为锐角,则,此时,不合题意,舍弃;选择②,因为为三角形内角,则,则代入得,解得,,则.选择③,则有,解得,则由正弦定理得,即,解得,因为为三角形内角,则,则,则23.(2023·新课标Ⅱ卷·高考真题)记的内角的对边分别为,已知的面积为,为中点,且.(1)若,求;(2)若,求.【答案】(1);(2).【分析】(1)方法1,利用三角形面积公式求出,再利用余弦定理求解作答;方法2,利用三角形面积公式求出,作出边上的高,利用直角三角形求解作答.(2)方法1,利用余弦定理求出a,再利用三角形面积公式求出即可求解作答;方法2,利用向量运算律建立关系求出a,再利用三角形面积公式求出即可求解作答.【详解】(1)方法1:在中,因为为中点,,,
则,解得,在中,,由余弦定理得,即,解得,则,,所以.方法2:在中,因为为中点,,,则,解得,在中,由余弦定理得,即,解得,有,则,,过作于,于是,,所以.(2)方法1:在与中,由余弦定理得,整理得,而,则,又,解得,而,于是,所以.方法2:在中,因为为中点,则,又,于是,即,解得,又,解得,而,于是,所以.24.(2025·全国一卷·高考真题)已知的面积为,若,则(
)A. B.C. D.【答案】ABC【分析】对由二倍角公式先可推知A选项正确,方法一分情况比较和的大小,方法二亦可使用正余弦定理讨论解决,方法三可结合射影定理解决,方法四可在法三的基础上,利用和差化积公式,回避讨论过程;,然后利用算出取值,最后利用三角形面积求出三边长,即可判断每个选项.【详解】,由二倍角公式,,整理可得,,A选项正确;由诱导公式,,展开可得,即,下证.方法一:分类讨论若,则可知等式成立;若,即,由诱导公式和正弦函数的单调性可知,,同理,又,于是,与条件不符,则不成立;若,类似可推导出,则不成立.综上讨论可知,,即.方法二:边角转化时,由,则,于是,由正弦定理,,由余弦定理可知,,则,若,则,注意到,则,于是(两者同负会有两个钝角,不成立),于是,结合,而都是锐角,则,于是,这和相矛盾,故不成立,则方法三:结合射影定理(方法一改进)由,结合正弦定理可得,,由射影定理可得,于是,则,可同方法一种讨论的角度,推出,方法四:和差化积(方法一改进)续法三:,可知同时为或者异号,即,展开可得,,即,结合和差化积,,由上述分析,,则,则,则,即,于是,可知.由,由,则,即,则,同理,由上述推导,,则,不妨设,则,即,由两角和差的正弦公式可知,C选项正确由两角和的正切公式可得,,设,则,由,则,则,于是,B选项正确,由勾股定理可知,,D选项错误.故选:ABC考点04三角形的周长问题25.(2022·北京·高考真题)在中,.(1)求;(2)若,且的面积为,求的周长.【答案】(1)(2)【分析】(1)利用二倍角的正弦公式化简可得的值,结合角的取值范围可求得角的值;(2)利用三角形的面积公式可求得的值,由余弦定理可求得的值,即可求得的周长.【详解】(1)解:因为,则,由已知可得,可得,因此,.(2)解:由三角形的面积公式可得,解得.由余弦定理可得,,所以,的周长为.26.(2021·北京·高考真题)在中,,.(1)求;(2)再从条件①、条件②、条件③这三个条件中选择一个作为已知,使存在且唯一确定,求边上中线的长.条件①:;条件②:的周长为;条件③:的面积为;【答案】(1);(2)答案不唯一,具体见解析.【分析】(1)由正弦定理化边为角即可求解;(2)若选择①:由正弦定理求解可得不存在;若选择②:由正弦定理结合周长可求得外接圆半径,即可得出各边,再由余弦定理可求;若选择③:由面积公式可求各边长,再由余弦定理可求.【详解】(1),则由正弦定理可得,,,,,,解得;(2)若选择①:由正弦定理结合(1)可得,与矛盾,故这样的不存在;若选择②:由(1)可得,设的外接圆半径为,则由正弦定理可得,,则周长,解得,则,由余弦定理可得边上的中线的长度为:;若选择③:由(1)可得,即,则,解得,则由余弦定理可得边上的中线的长度为:.27.(2024·新课标Ⅱ卷·高考真题)记的内角A,B,C的对边分别为a,b,c,已知.(1)求A.(2)若,,求的周长.【答案】(1)(2)【分析】(1)根据辅助角公式对条件进行化简处理即可求解,常规方法还可利用同角三角函数的关系解方程组,亦可利用导数,向量数量积公式,万能公式解决;(2)先根据正弦定理边角互化算出,然后根据正弦定理算出即可得出周长.【详解】(1)方法一:常规方法(辅助角公式)由可得,即,由于,故,解得方法二:常规方法(同角三角函数的基本关系)由,又,消去得到:,解得,又,故方法三:利用极值点求解设,则,显然时,,注意到,,在开区间上取到最大值,于是必定是极值点,即,即,又,故方法四:利用向量数量积公式(柯西不等式)设,由题意,,根据向量的数量积公式,,则,此时,即同向共线,根据向量共线条件,,又,故方法五:利用万能公式求解设,根据万能公式,,整理可得,,解得,根据二倍角公式,,又,故(2)由题设条件和正弦定理,又,则,进而,得到,于是,,由正弦定理可得,,即,解得,故的周长为28.(2022·全国乙卷·高考真题)记的内角的对边分别为,已知.(1)证明:;(2)若,求的周长.【答案】(1)见解析(2)14【分析】(1)利用两角差的正弦公式化简,再根据正弦定理和余弦定理化角为边,从而即可得证;(2)根据(1)的结论结合余弦定理求出,从而可求得,即可得解.【详解】(1)证明:因为,所以,所以,即,所以;(2)解:因为,由(1)得,由余弦定理可得,则,所以,故,所以,所以的周长为.考点05正、余弦定理在几何中的应用29.(2023·新课标Ⅰ卷·高考真题)已知在中,.(1)求;(2)设,求边上的高.【答案】(1)(2)6【分析】(1)根据角的关系及两角和差正弦公式,化简即可得解;(2)利用同角之间的三角函数基本关系及两角和的正弦公式求,再由正弦定理求出,根据等面积法求解即可.【详解】(1),,即,又,,,,即,所以,.(2)由(1)知,,由,由正弦定理,,可得,,.30.(2023·全国甲卷·高考真题)在中,,的角平分线交BC于D,则.【答案】【分析】方法一:利用余弦定理求出,再根据等面积法求出;方法二:利用余弦定理求出,再根据正弦定理求出,即可根据三角形的特征求出.【详解】如图所示:记,方法一:由余弦定理可得,,因为,解得:,由可得,,解得:.故答案为:.方法二:由余弦定理可得,,因为,解得:,由正弦定理可得,,解得:,,因为,所以,,又,所以,即.故答案为:.【点睛】本题压轴相对比较简单,既可以利用三角形的面积公式解决角平分线问题,也可以用角平分定义结合正弦定理、余弦定理求解,知识技能考查常规.31.(2022·全国甲卷·高考真题)已知中,点D在边BC上,.当取得最小值时,.【答案】/【分析】设,利用余弦定理表示出后,结合基本不等式即可得解.【详解】[方法一]:余弦定理设,则在中,,在中,,所以,当且仅当即时,等号成立,所以当取最小值时,.故答案为:.[方法二]:建系法令BD=t,以D为原点,OC为x轴,建立平面直角坐标系.则C(2t,0),A(1,),B(-t,0)[方法三]:余弦定理设BD=x,CD=2x.由余弦定理得,,,,令,则,,,当且仅当,即时等号成立.[方法四]:判别式法设,则在中,,在中,,所以,记,则由方程有解得:即,解得:所以,此时所以当取最小值时,,即.32.(2021·浙江·高考真题)在中,,M是的中点,,则,.【答案】【分析】由题意结合余弦定理可得,进而可得,再由余弦定理可得.【详解】由题意作出图形,如图,在中,由余弦定理得,即,解得(负值舍去),所以,在中,由余弦定理得,所以;在中,由余弦定理得.故答案为:;.33.(2025·北京·高考真题)在中,.(1)求c的值;(2)再从条件①、条件②、条件③这三个条件中选择一个作为已知,使得存在,求BC边上的高.条件①:;条件②:;条件③:的面积为.【答案】(1)6(2)答案见解析【分析】(1)由平方关系、正弦定理即可求解;(2)若选①,可得都是钝角,矛盾;若选②,由正弦定理求得,由余弦定理求得,利用等面积法求得高;若选③,首先根据三角形面积公式求得,再根据余弦定理可求得,由此可说明三角形存在,且可由等面积法求解.【详解】(1)因为,所以,由正弦定理有,解得;(2)如图所示,若存在,则设其边上的高为,若选①,,因为,所以,因为,这表明此时三角形有两个钝角,而这是不可能的,所以此时三角形不存在,故边上的高也不存在;若选②,,由有,由正弦定理得,所以,所以由余弦定理得,此时三角形是存在的,且唯一确定,所以,即,所以边上的高;若选③,的面积是,则,解得,由余弦定理可得可以唯一确定,进一步由余弦定理可得也可以唯一确定,即可以唯一确定,这表明此时三角形是存在的,且边上的高满足:,即.34.(2021·新高考全国Ⅰ卷·高考真题)记是内角,,的对边分别为,,.已知,点在边上,.(1)证明:;(2)若,求.【答案】(1)证明见解析;(2).【分析】(1)根据正弦定理的边角关系有,结合已知即可证结论.(2)方法一:两次应用余弦定理,求得边与的关系,然后利用余弦定理即可求得的值.【详解】(1)设的外接圆半径为R,由正弦定理,得,因为,所以,即.又因为,所以.(2)[方法一]【最优解】:两次应用余弦定理因为,如图,在中,,①在中,.②由①②得,整理得.又因为,所以,解得或,当时,(舍去).当时,.所以.[方法二]:等面积法和三角形相似如图,已知,则,即,而,即,故有,从而.由,即,即,即,故,即,又,所以,则.[方法三]:正弦定理、余弦定理相结合由(1)知,再由得.在中,由正弦定理得.又,所以,化简得.在中,由正弦定理知,又由,所以.在中,由余弦定理,得.故.[方法四]:构造辅助线利用相似的性质如图,作,交于点E,则.由,得.在中,.在中.因为,所以,整理得.又因为,所以,即或.下同解法1.[方法五]:平面向量基本定理因为,所以.以向量为基底,有.所以,即,又因为,所以.③由余弦定理得,所以④联立③④,得.所以或.下同解法1.[方法六]:建系求解以D为坐标原点,所在直线为x轴,过点D垂直于的直线为y轴,长为单位长度建立直角坐标系,如图所示,则.由(1)知,,所以点B在以D为圆心,3为半径的圆上运动.设,则.⑤由知,,即.⑥联立⑤⑥解得或(舍去),,代入⑥式得,由余弦定理得.【整体点评】(2)方法一:两次应用余弦定理是一种典型的方法,充分利用了三角形的性质和正余弦定理的性质解题;方法二:等面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版共有产权住房房地产买卖经纪成交合同书
- 2025版农业项目合作开发合同范本
- 二零二五年度汽车零部件加工合同
- 2025版矿业产业链整合咨询服务合同宝典
- 2025版绿色能源抵押贷款服务合同
- 2025房地产项目土地储备合作合同范本
- 2025版企业内部信息安全管理服务合同
- 2025版XX智慧城市建设一体化解决方案合同
- 二零二五年环保项目股权转让担保及实施合同
- 2025版智能交通系统工程劳务分包合同模板
- 医院外包项目评估审核制度与程序
- 天猫店铺转让合同范本
- 全过程工程咨询服务技术方案
- JJG 814-2015自动电位滴定仪
- JJF 1753-2019医用体外压力脉冲碎石机校准规范
- GB/T 24405.1-2009信息技术服务管理第1部分:规范
- GB/T 13539.1-2015低压熔断器第1部分:基本要求
- GB/T 13384-2008机电产品包装通用技术条件
- 严守培训纪律承诺书模板
- 水库监理实施细则范本
- 空调竣工验收报告78017
评论
0/150
提交评论