2025年重庆市彭水一中7年级数学下册第五章生活中的轴对称专题练习试卷(解析版)_第1页
2025年重庆市彭水一中7年级数学下册第五章生活中的轴对称专题练习试卷(解析版)_第2页
2025年重庆市彭水一中7年级数学下册第五章生活中的轴对称专题练习试卷(解析版)_第3页
2025年重庆市彭水一中7年级数学下册第五章生活中的轴对称专题练习试卷(解析版)_第4页
2025年重庆市彭水一中7年级数学下册第五章生活中的轴对称专题练习试卷(解析版)_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

重庆市彭水一中7年级数学下册第五章生活中的轴对称专题练习考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、如图,AD,BE,CF依次是ABC的高、中线和角平分线,下列表达式中错误的是()A.AE=CE B.∠ADC=90° C.∠CAD=∠CBE D.∠ACB=2∠ACF2、下列在线学习平台的图标中,是轴对称图形的是()A. B. C. D.3、如图把一张长方形的纸按如图那样折叠后,B、D两点分别落在了B'、D'点处,若∠AOBA.59°6' B.59°16' C.57°44、下列图形不是轴对称图形的是()A. B. C. D.5、如图所示图形中轴对称图形是()A. B. C. D.6、如图,△ABC与△A′B′C′关于直线MN对称,BB′交MN于点O,则下列结论不一定正确的是()A.AC=A′C′ B.BO=B′O C.AA′⊥MN D.ABB′C′7、如图1,有一张长、宽分别为12和8的长方形纸片,将它对折后再对折,得到图2,然后沿图2中的虚线剪开,得到两部分,其中一部分展开后的平面图形(图3)可以是()A.①②③ B.①②④ C.①③④ D.②③④8、下列四个标志中,是轴对称图形的是()A. B. C. D.9、下列图形中,不是轴对称图形的是()A. B. C. D.10、如图,正方形网格中,A,B两点均在直线a上方,要在直线a上求一点P,使PA+PB的值最小,则点P应选在()A.C点 B.D点 C.E点 D.F点第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题2分,共计20分)1、将一张长方形纸片按如图所示的方式折叠,BE、BD为折痕.若与重合,则∠EBD为______度.2、在“线段、钝角、三角形、等腰三角形、圆”这五个图形中,是轴对称图形的有____个.3、如图,△ABC中,点D在边BC上,将点D分别以AB、AC为对称轴,画出对称点E、F,连接AE、AF.根据图中标示的角度,可知∠EAF=___°.4、如图,ABC与关于直线l对称,则∠B的度数为__________.5、如图,将△ABC折叠,使点B落在AC边的中点D处,折痕为MN,若BC=3,AC=2,则△CDN的周长为___.6、如图,△ABC中,AB=8cm,BC=5cm,AC=6cm,沿过点B的直线折叠三角形,使点C落在AB边上的点E处,折痕为BD,则△AED的周长长度为__________.7、如图,在平行四边形中,,在内有一点,将向外翻折至,其中为其对称轴,过点,分别作,的垂线,垂足为,,,,已知,,那么__________.8、小聪在研究题目“如图,在等腰三角形ABC中,,,的平分线与AB的垂直平分线OD交于点O,点C沿直线EF折叠后与点O重合,你能得出那些结论?”时,发现了下面三个结论:①;②图中没有60°的角;③D、O、C三点共线.请你直接写出其中正确的结论序号:______9、如图,在矩形中,,,点、分别在、上,将矩形沿折叠,使点、分别落在矩形外部的点、处,则整个阴影部分图形的周长为______.10、如图,将沿、翻折,顶点均落在点O处,且与重合于线段,若,则的度数_____.三、解答题(6小题,每小题10分,共计60分)1、如图,在平面直角坐标系中,各顶点的坐标分别为:,,.(1)在图中作,使与关于y轴对称;(2)在(1)的条件下,写出点A、B、C的对应点、、的坐标.2、(1)已知:如图(甲),等腰三角形的一个内角为锐角,腰为a,求作这个等腰三角形;(2)在(1)中,把锐角变成钝角,其他条件不变,求作这个等腰三角形.3、在下图给出一个图案的左半部分,其中虚线是这个图案的对称轴.请你画出这个图案的右半部分,使它组成一个完整的图案.4、ABCD是长方形纸片的四个顶点,点E、F、H分别边AD、BC、AD上的三点,连接EF、FH.(1)将长方形纸片的ABCD按如图①所示的方式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B′、C′、D′,点B′在FC′上,则∠EFH的度数为;(2)将长方形纸片的ABCD按如图②所示的方式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B′、C′、D'(B′、C′的位置如图所示),若∠B'FC′=16°,求∠EFH的度数;(3)将长方形纸片的ABCD按如图③所示的方式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B′、C′,D′(B′、C′的位置如图所示).若∠EFH=n°,则∠B′FC′的度数为.5、如图,从图形Ⅰ到图形Ⅱ是进行了平移还是轴对称?如果是轴对称,找出对称轴;如果是平移,是怎样的平移?6、如图,正三角形网格中,已知两个小三角形被涂黑.(1)再将图中1其余小三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形(画出两种不同的);(2)再将图中2其余小三角形涂黑两个,使整个被涂黑的图案构成一个轴对称图形(画出两种不同的).-参考答案-一、单选题1、C【分析】根据三角形的高、中线和角平分线的定义(1)三角形的角平分线定义:三角形的一个角的平分线与这个角的对边相交,连接这个角的顶点和交点的线段叫做三角形的角平分线;(2)三角形的中线定义:在三角形中,连接一个顶点和它所对边的中点的连线段叫做三角形的中线;(3)三角形的高定义:从三角形一个顶点向它的对边(或对边所在的直线)作垂线,顶点和垂足间的线段叫做三角形的高线,简称为高.求解即可.【详解】解:A、BE是△ABC的中线,所以AE=CE,故本表达式正确;B、AD是△ABC的高,所以∠ADC=90,故本表达式正确;C、由三角形的高、中线和角平分线的定义无法得出∠CAD=∠CBE,故本表达式错误;D、CF是△ABC的角平分线,所以∠ACB=2∠ACF,故本表达式正确.故选:C.【点睛】本题考查了三角形的高、中线和角平分线的定义,是基础题,熟记定义是解题的关键.2、B【分析】根据轴对称图形定义进行分析即可.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:选项A,C,D都不能找到这样的一条直线,使这些图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;选项B能找到这样的一条直线,使这个图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形.故选:B.【点睛】此题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3、B【分析】根据翻折的性质可得∠B′OG=∠BOG,再表示出∠AOB′,然后根据平角等于180°列出方程求解即可.【详解】解:由翻折的性质得,∠B′OG=∠BOG,∵∠AOB'=61°28',∠AOB′+∠B′OG∴2∠BOG=180°-61°28'=118°32解得∠BOG=59°16'故选:B.【点睛】本题考查了翻折变换的性质,熟记翻折的性质并根据平角等于180°列出方程是解题的关键.4、B【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】选项A、C、D能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,选项B不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,故选:B.【点睛】此题主要考查了轴对称图形,关键是正确确定对称轴位置.5、C【分析】根据轴对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,进行逐一判断即可【详解】解:A、不是轴对称图形,不符合题意;B、不是轴对称图形,不符合题意;C、是轴对称图形,符合题意;D、不是轴对称图形,不符合题意;故选C.【点睛】本题主要考查了轴对称图形的识别,熟知轴对称图形的定义是解题的关键.6、D【分析】根据轴对称的性质解答.【详解】解:∵△ABC与△A′B′C′关于直线MN对称,BB′交MN于点O,∴AC=A′C′,BO=B′O,AA′⊥MN,但ABB′C′不正确,故选:D.【点睛】此题考查了轴对称的性质:轴对称两个图形的对应边相等,对应角相等,熟记性质是解题的关键.7、B【分析】由剪去的三角形与展开后的平面图形中的三角形是全等三角形,观察形成的图案是否符合要求判断即可.【详解】解:图3中,图③不符合题意,图③中的4个三角形与图2中剪去的三角形不全等.故①②④符合题意,故选:B.【点睛】本题考查的是轴对称的性质,全等三角形的性质,动手实践是解此类题的关键.8、D【分析】利用轴对称图形的定义进行解答即可.【详解】解:A、不是轴对称图形,故此选项不合题意;B、不是轴对称图形,故此选项不符合题意;C、不是轴对称图形,故此选项不合题意;D、是轴对称图形,故此选项符合题意;故选:D.【点睛】此题主要考查了轴对称图形,关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.9、A【详解】A、不是轴对称图形,故符合题意;B、是轴对称图形,故不符合题意;C、是轴对称图形,故不符合题意;D、是轴对称图形,故不符合题意;故选A.【点睛】本题主要考查轴对称图形的识别,熟练掌握“如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫轴对称图形”是解题的关键.10、C【分析】取A点关于直线a的对称点G,连接BG与直线a交于点E,点E即为所求.【详解】解:如图所示,取A点关于直线a的对称点G,连接BG与直线a交于点E,点E即为所求,故选C.【点睛】本题主要考查了轴对称最短路径问题,解题的关键在于能够熟练掌握轴对称最短路径的相关知识.二、填空题1、90【分析】根据折叠的性质和平角的定义即可得到结论.【详解】解:由折叠可知,∠ABE=∠A'BE=∠ABA′,∠CBD=∠C'BD=∠CBC′,∴∠DBE=∠A'BE+∠C'BD=∠ABA′+∠CBC′=(∠ABA'+∠CBC')=×180°=90°.故答案为:90.【点睛】本题考查了角的计算,折叠的性质,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.2、【分析】轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,根据轴对称图形的概念求解即可.【详解】解:根据轴对称图形的定义可知:线段、钝角、等腰三角形和圆都是轴对称图形.而三角形不一定是轴对称图形.故答案为:4.【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3、106【分析】连接AD,根据轴对称的性质求出,,再根据三角形的内角和定理求出,最后应用等价代换思想即可求解.【详解】解:如下图所示,连接AD.∵点E和点F是点D分别以AB、AC为对称轴画出的对称点,∴,.∵,,∴.∴.故答案为:106.【点睛】本题考查轴对称的性质,熟练掌握该知识点是解题关键.4、100°【分析】根据轴对称的性质可得≌,再根据和的度数即可求出的度数.【详解】解:∵与关于直线l对称∴≌∴,∴故答案为:【点睛】本题主要考查了轴对称的性质以及全等的性质,熟练掌握轴对称的性质和全等的性质是解答此题的关键.5、4【分析】由折叠可得NB=ND,由点D是AC的中点,可求出CD的长,将△CDN的周长转化为CD+BC即可.【详解】解:由折叠得,NB=ND,∵点D是AC的中点,∴CD=AD=AC=×2=1,∴△CDN的周长=CD+ND+NC=CD+NB+NC=CD+BC=1+3=4,故答案为:4.【点睛】本题考查了折叠的性质,将三角形的周长转化为CD+BC是解决问题的关键.6、9cm【分析】根据翻折的性质可知CD=DE,BC=BE,于是可以得到AD+DE的长和AE的长,从而可以得到△ADE的周长.【详解】解:由题意可得,BC=BE,CD=DE,∵AB=8cm,BC=5cm,AC=6cm,∴AD+DE=AD+CD=AC=6cm,AE=AB-BE=AB-BC=8-5=3cm,∴AD+DE+AE=9cm,即△AED的周长为9cm,故选:C.【点睛】本题考查翻折变换和三角形的周长,解答本题的关键是利用等量代换的思想,求三角形的周长.7、36【分析】连接,,根据折叠的性质可得,根据四边形四边形,结合已知条件即可求得.【详解】解:如图,连接,,∵将向外翻折至,其中为其对称轴,∴,∵四边形四边形,∴,∴,故答案为:36.【点睛】本题考查了轴对称的性质,利用四边形四边形结合已知条件计算是解题的关键.8、①【分析】根据题意先求出∠BAO=25°,进而求出∠OBC=40°,求出∠COE=∠OCB=40°,最后根据等腰三角形的性质即可得出,进而再判断②③即可.【详解】解:∵∠BAC=50°,AO为∠BAC的平分线,∴∠BAO=∠BAC=×50°=25°.又∵AB=AC,∴∠ABC=∠ACB=65°.∵DO是AB的垂直平分线,∴OA=OB,∴∠ABO=∠BAO=25°,∴∠OBC=∠ABC-∠ABO=65°-25°=40°.∵AO为∠BAC的平分线,AB=AC,∴直线AO垂直平分BC,∴OB=OC,∴∠OCB=∠OBC=40°,∵将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,∴OE=CE.∴∠COE=∠OCB=40°;在△OCE中,∠OEC=180°-∠COE-∠OCB=180°-40°-40°=100°,∴∠OEF=∠CEO=50°,①正确;∵∠OCB=∠OBC=∠COE=40°,∴∠BOE=180°-∠OBC-∠COE-∠OCB=180°-40°-40°-40°=60°,②错误;∵∠ABO=∠BAO=25°,DO是AB的垂直平分线,∴∠DOB=90°-∠ABO=75°,∵∠OCB=∠OBC=40°,∴∠BOC=180°-∠OBC-∠OCB=180°-40°-40°=100°,∴∠DOC=∠DOB+∠BOC=75°+100°=175°,即D、O、C三点不共线,③错误.故答案为:①.【点睛】本题考查等腰三角形的性质和三角形内角和180°以及翻折变换及其应用,解题的关键是根据翻折变换的性质,找出图中隐含的等量关系,灵活运用有关定理来分析判断.9、32【分析】根据折叠的性质,得FD=FD1,C1D1=CD,C1E=CE,则阴影部分的周长即为矩形的周长.【详解】解:根据折叠的性质,得FD=FD1,C1D1=CD,C1E=CE,则阴影部分的周长=矩形的周长=2×(12+4)=32.故答案为:32.【点睛】本题主要考查了翻折变换,关键是要能够根据折叠的性质得到对应的线段相等,从而求得阴影部分的周长.10、47°【分析】由翻折的性质可得∠A=∠DOE,∠B=∠EOF,可得∠DOF=∠A+∠B,由三角形内角和定理可得∠A+B=180°−∠C,即可求∠C的度数.【详解】解:∵将△ABC沿DE,EF翻折,顶点A,B均落在点O处,∴∠A=∠DOE,∠B=∠EOF,∴∠DOF=∠A+∠B∵∠A+∠B+∠C=180°∴∠A+B=180°−∠C∵∠DOF=∠C+∠CDO+∠COF=180°−∠C∴∠C+86°=180°−∠C∴∠C=47°故答案为:47°【点睛】本题考查了翻折的性质,三角形内角和定理,熟练运用三角形内角和定理是本题的关键.三、解答题1、(1)见详解;(2)(3,2)、(4,-3)、(1,-1)【分析】(1)根据关于y轴对称的点的坐标特点:纵坐标不变,横坐标为相反数,画出即可;(2)根据关于y轴对称的点的坐标特点:纵坐标不变,横坐标为相反数,写出各顶点坐标即可.【详解】解:(1)如图所示:(2)(3,2)、(4,-3)、(1,-1)【点睛】本题考查了根据轴对称变换作图,熟知关于对称轴对称的点的坐标特点是解答此题的关键.2、(1)答案见解析;(2)答案见解析.【分析】(1)分成是顶角和顶角两种情况进行讨论,当是底角时,首先作一个∠A=,在一边上截取AB=a,然后过B作另一边的垂线BR,然后在AR的延长线上截取RC=AR,连接BC,即可得到三角形,当是顶角时,作∠D=,在角的两边上截取DE=DF=a,则△DEF就是所求三角形;(2)作∠M=,在角的边上截取MN=MH,则△MNH就是所求.【详解】(1)如图所示:△ABC和△DEF都是所求的三角形;(2)如图所示:△MNH是所求的三角形.【点睛】本题考查了三角形的作法,正确进行讨论,理解等腰三角形的性质:三线合一定理,是关键.3、图见解析.【分析】根据轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)即可得.【详解】解:根据轴对称图形的定义,画图如下(右边的实线部分):【点睛】本题考查了画轴对称图形,熟记定义是解题关键.4、(1)90°;(2)98°;(3)180°﹣2n°【分析】(1)由折叠可得∠BFE=∠B′FE,∠CFH=∠C′FH,进而得出∠EFH=(∠B′FB+∠C′FC),即可得出结果;(2)可设∠BFE=∠B′FE=x,∠CFH=∠C′FH=y,根据2x+16°+2y=180°,得出x+y=82°,进而得到∠EFH;(3)可设∠BFE=∠B′FE=x,∠CFH=∠C′FH=y,即可得到x+y=180°﹣n°,再根据∠EFH=∠B′FE+∠C′FH﹣∠B′FC′=x+y﹣∠B′FC′,即可得到∠B′FC′.【详解】解:(1)∵沿EF、FH折叠,∴∠BFE=∠B′FE,∠CFH=∠C′FH,∵点B′在C′F上,∴∠EFH=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论