




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
贵州省赤水市中考数学真题分类(勾股定理)汇编综合训练考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题14分)一、单选题(7小题,每小题2分,共计14分)1、如图,在2×2的正方形网格中有9个格点,已经取定点A和B,在余下的点中任取一点C,使△ABC为直角三角形的概率是(
)A. B. C. D.2、如图,在由边长为1的7个正六边形组成的网格中,点A,B在格点上.若再选择一个格点C,使△ABC是直角三角形,且每个直角三角形边长均大于1,则符合条件的格点C的个数是(
)A.2 B.4 C.5 D.63、如图,P是等边三角形内的一点,且,,,以为边在外作,连接,则以下结论中不正确的是(
)A. B. C. D.4、如图,在△ABC中,∠BAC=90°,BC=5,以AB,AC为边作正方形,这两个正方形的面积和为(
)A.5 B.9 C.16 D.255、如图是一个三级台阶,它的每一级的长、宽和高分别为9、3和1,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物.则这只蚂蚁沿着台阶面爬行的最短路程是(
)A.6 B.8 C.9 D.156、如图,长方形中,,,将此长方形折叠,使点与点重合,折痕为,则的长为(
)A.12 B.8 C.10 D.137、如图,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,点D是BC上一动点,连接AD,将△ACD沿AD折叠,点C落在点E处,连接DE交AB于点F,当∠DEB是直角时,DF的长为(
).A.5 B.3 C. D.第Ⅱ卷(非选择题86分)二、填空题(8小题,每小题2分,共计16分)1、在△ABC中,AD是BC边上的中线,AD⊥AB,如果AC=5,AD=2,那么AB的长是________.2、如图所示,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,正方形A、B、C的面积分别是,,,则正方形D的面积是______.3、我国古代九章算术中有数学发展史上著名的“葭生池中”问题:今有方池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问:葭长几何?(1丈=10尺).意思是:有一个长方体池子,底面是边长为1丈的正方形,中间有芦苇,把高出水面1尺的芦苇拉向池边(芦苇没有折断),刚好贴在池边上,问:芦苇长多少尺?答:芦苇长____________尺.4、如图,在中,,,,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点处,两条折痕与斜边AB分别交于点E、F,则DF的长为_________.5、设,是直角三角形的两条直角边长,若该三角形的周长为24,斜边长为10,则的值为________.6、如图,在Rt△ABC中,∠ABC=90°,AB=3,AC=5,点E在BC上,将△ABC沿AE折叠,使点B落在AC边上的点B′处,则BE的长为________________.7、如图,在△ABC中,AB=10,BC=9,AC=17,则BC边上的高为_______.8、(2011贵州安顺,16,4分)如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C′点,那么△ADC′的面积是.三、解答题(7小题,每小题10分,共计70分)1、如图,在一次地震中,一棵垂直于地面且高度为16米的大树被折断,树的顶部落在离树根8米处,即,求这棵树在离地面多高处被折断(即求AC的长度)?2、有一只喜鹊在一棵高3米的小树的树梢上觅食,它的巢筑在距离该树24米,高为14米的一棵大树上,且巢离大树顶部为1米,这时,它听到巢中幼鸟求助的叫声,立刻赶过去,如果它的飞行速度为每秒5米,那么它至少几秒能赶回巢中?3、勾股定理是人类最伟大的十个科学发现之一,在《周髀算经》中就有“若勾三,股四,则弦五”的记载,汉代数学家赵爽为证明勾股定理创制的“赵爽弦图”也流传至今.迄今为止已有多种证明勾股定理的方法.下面是数学课上创新小组验证过程的一部分.请认真阅读并根据他们的思路将后续的过程补充完整:将两张全等的直角三角形纸片按图所示摆放,其中,点在线段上,点在边两侧,试证明:.4、我市《道路交通管理条例》规定:小汽车在城市街道上的行驶速度不得超过60km/h.如图,一辆小汽车在一条城市街道上沿直道行驶,某一时刻刚好行驶到车速检测点A正前方30m的C处,2秒后又行驶到与车速检测点A相距50m的B处.请问这辆小汽车超速了吗?若超速,请求出超速了多少?5、台风是一种自然灾害,它以台风中心为圆心在周围上百千米的范围内形成极端气候,有极强的破坏力,如图,有一台风中心沿东西方向由行驶向,已知点为海港,并且点与直线上的两点,的距离分别为,,又,以台风中心为圆心周围250km以内为受影响区域.(1)求的度数;(2)海港受台风影响吗?为什么?6、如图,点是正方形内一点,将绕点顺时针旋转到的位置,若,求的度数.7、设直角三角形的两条直角边长及斜边上的高分别为a,b及h,求证:.-参考答案-一、单选题1、C【解析】【分析】找到可以组成直角三角形的点,根据概率公式解答即可.【详解】解:如图,,,,均可与点和组成直角三角形.,故选:C.【考点】本题考查了概率公式,解题的关键是掌握如果一个事件有种可能,而且这些事件的可能性相同,其中事件出现种结果,那么事件的概率(A).2、D【解析】【分析】分三种情况讨论,当∠A=90°,或∠B=90°,或∠C=90°时,分别画出符合条件的图形,即可解答.【详解】解:分三种情况讨论,当∠A=90°,或∠B=90°,或∠C=90°如图符合条件的格点C的个数是6个故选:D.【考点】本题考查正多边形和圆的性质、直角三角形的判定与性质、直径所对的圆周角是90°等知识,是基础考点,掌握相关知识是解题关键.3、C【解析】【分析】根据△ABC是等边三角形,得出∠ABC=60°,根据△BQC≌△BPA,得出∠CBQ=∠ABP,PB=QB=4,PA=QC=3,∠BPA=∠BQC,求出∠PBQ=60°,即可判断A;根据勾股定理的逆定理即可判断B;根据△BPQ是等边三角形,△PCQ是直角三角形即可判断D;求出∠APC=150°-∠QPC,和PC≠2QC,可得∠QPC≠30°,即可判断C.【详解】解:∵△ABC是等边三角形,∴∠ABC=60°,∵△BQC≌△BPA,∴∠CBQ=∠ABP,PB=QB=4,PA=QC=3,∠BPA=∠BQC,∴∠PBQ=∠PBC+∠CBQ=∠PBC+∠ABP=∠ABC=60°,所以A正确,不符合题意;PQ=PB=4,PQ2+QC2=42+32=25,PC2=52=25,∴PQ2+QC2=PC2,∴∠PQC=90°,所以B正确,不符合题意;∵PB=QB=4,∠PBQ=60°,∴△BPQ是等边三角形,∴∠BPQ=60°,∴∠APB=∠BQC=∠BQP+∠PQC=60°+90°=150°,所以D正确,不符合题意;∠APC=360°-150°-60°-∠QPC=150°-∠QPC,∵PC=5,QC=PA=3,∴PC≠2QC,∵∠PQC=90°,∴∠QPC≠30°,∴∠APC≠120°.所以C不正确,符合题意.故选:C.【考点】本题是三角形综合题,考查了全等三角形的性质、等边三角形的性质、勾股定理的逆定理,解决本题的关键是综合应用以上知识.4、D【解析】【分析】设,根据勾股定理可得,即可求解.【详解】解:设,根据勾股定理可得,即两个正方形的面积和为25故选:D【考点】本题考查了勾股定理,掌握勾股定理是解题的关键.5、D【解析】【分析】此类题目只需要将其展开便可直观的得出解题思路.将台阶展开得到的是一个矩形,蚂蚁要从B点到A点的最短距离,便是矩形的对角线,利用勾股定理即可解出答案.【详解】解:如图,将台阶展开,因为AC=3×3+1×3=12,BC=9,所以AB2=AC2+BC2=225,所以AB=15,所以蚂蚁爬行的最短线路为15.故选:D.【考点】本题考查了勾股定理的应用,掌握勾股定理的应用并能得出平面展开图是解题的关键.6、D【解析】【分析】设BE为x,则AE为25-x,在由勾股定理有,即可求得BE=13.【详解】设BE为x,则DE为x,AE为25-x∵四边形为长方形∴∠EAB=90°∴在中由勾股定理有即化简得解得故选:D.【考点】本题考查了折叠问题求折痕或其他边长,主要可根据折叠前后两图形的全等条件,把某个直角三角形的三边都用同一未知量表示出来,并根据勾股定理建立方程,进而可以求解.7、C【解析】【分析】如图,由题意知,,,,可知三点共线,与重合,在中,由勾股定理得,求的值,设,,在中,由勾股定理得,计算求解即可.【详解】解:如图,∵是直角∴由题意知,,∴∴三点共线∴与重合在中,由勾股定理得设,在中,由勾股定理得即解得∴的长为故选C.【考点】本题考查了折叠的性质,勾股定理等知识.解题的关键在于明确三点共线,与重合.二、填空题1、3【解析】【分析】过点C作CE∥AB交AD延长线于E,先证△ABD≌△ECD(AAS),求出AE=2AD=4,在Rt△AEC中,即可.【详解】解:过点C作CE∥AB交AD延长线于E,∵AD是BC边上的中线,∴BD=CD,∵AD⊥AB,CE∥AB,∴AD⊥CE,∠ABD=∠ECD,∴∠E=90°,在△ABD和△ECD中,∴△ABD≌△ECD(AAS),∴AB=EC,AD=ED=2,∴AE=2AD=4,在Rt△AEC中,,∴AB=CE=3.故答案为:3.【考点】本题考查中线性质,平行线性质,三角形全等判定与性质,勾股定理,掌握中线性质,平行线性质,三角形全等判定与性质,勾股定理,关键是利用辅助线构造三角形全等.2、15【解析】【分析】根据勾股定理有S正方形1+S正方形2=S大正方形=49,S正方形C+S正方形D=S正方形2,S正方形A+S正方形B=S正方形1,等量代换即可求正方形D的面积.【详解】解:如图,根据勾股定理可知,∵S正方形1+S正方形2=S大正方形=49,S正方形C+S正方形D=S正方形2,S正方形A+S正方形B=S正方形1,∴S大正方形=S正方形C+S正方形D+S正方形A+S正方形B=49.∴正方形D的面积=49-8-12-14=15(cm2);故答案为:15.【考点】此题主要考查了勾股定理,注意根据正方形的面积公式以及勾股定理得到图中正方形的面积之间的关系:以直角三角形的两条直角边为边长的两个正方形的面积和等于以斜边为边长的面积.3、13【解析】【分析】设水深OB=x尺,则芦苇长OA'=(x+1)尺,根据勾股定理列方程求解即可.【详解】解:根据题意,设水深OB=x尺,则芦苇长OA'=(x+1)尺,根据题意列方程得:x2+52=(x+1)2,解得:x=12∴OA'=13尺.故答案为:13.【考点】此题考查了勾股定理的实际应用,解题的关键是根据题意设出未知数,根据勾股定理列方程求解.4、【解析】【分析】根据折叠的性质可得,,从而得出相应角相等,再根据角之间的关系得出,从而得出为等腰直角三角形,再根据勾股定理求出的长度,利用三角形的面积公式求出的长度,再求出、的长度,最后求出的长度.【详解】解:∵边AC沿CE翻折,使点A落在AB上的点D处,∴,∴,,,∵边BC沿CF翻折,使点B落在CD的延长线上的点处,∴,∴,∵,∴,∴为等腰直角三角形,∴,∵,,,∴,∵,∴,∴,∴.故答案为:.【考点】本题主要考查了图形的翻折变化,勾股定理的运用,等腰直角三角形的判定,根据折叠的性质求得相应的角是解答本题的关键.5、48【解析】【分析】由该三角形的周长为24,斜边长为10可知a+b+10=24,再根据勾股定理和完全平方公式即可求出ab的值.【详解】解:∵三角形的周长为24,斜边长为10,∴a+b+10=24,∴a+b=14,∵a、b是直角三角形的两条直角边,∴a2+b2=102,则a2+b2=(a+b)2−2ab=102,即142−2ab=102,∴ab=48.故答案为:48.【考点】本题主要考查了勾股定理,掌握利用勾股定理证明线段的平方关系及完全平方公式的变形求值是解题的关键.6、.【解析】【分析】首先根据勾股定理求出BC的长,根据折叠性质,可得=AB=3,=BE,∠B=∠=90°,然后设BE=,根据勾股定理,列出,求解即可.【详解】解:∵∠ABC=90°,AB=3,AC=5,在Rt△ABC中,,将△ABC沿AE折叠,∴=AB=3,=BE,∠B=∠=90°,则,设BE=,EC=4-,,在Rt△中,由勾股定理得:,即,解得,∴BE=.故答案为.【考点】本题主要考查了翻折变换的性质及勾股定理的应用;解题的关键是准确找出图形中隐含的相等关系.7、8【解析】【分析】作交的延长于点,在中,,在中,,根据列出方程即可求解.【详解】如图,作交的延长于点,则即为BC边上的高,在中,,在中,,,AB=10,BC=9,AC=17,,解得,故答案为:8.【考点】本题考查了勾股定理,掌握三角形的高,直角三角形是解题的关键.8、6cm2【解析】【分析】先根据勾股定理得到AB=10cm,再根据折叠的性质得到DC=DC′,BC=BC′=6cm,则AC′=4cm,设DC=xcm,在Rt△ADC′中根据勾股定理列方程求得x的值,然后根据三角形的面积公式计算即可.【详解】∵∠C=90°,BC=6cm,AC=8cm,∴AB=10cm,∵将△BCD沿BD折叠,使点C落在AB边的C′点,∴△BCD≌△BC′D,∴∠C=∠BC′D=90°,DC=DC′,BC=BC′=6cm,∴AC′=AB-BC′=4cm,设DC=xcm,则AD=(8-x)cm,在Rt△ADC′中,AD2=AC′2+C′D2,即(8-x)2=x2+42,解得x=3,∵∠AC′D=90°,∴△ADC′的面积═×AC′×C′D=×4×3=6(cm2).考点:折叠的性质,勾股定理点评:折叠的性质:折叠前后两图形全等,即对应角相等,对应线段相等,对应点的连线段被折痕垂直平分.三、解答题1、这棵树在离地面6米处被折断【解析】【分析】设,利用勾股定理列方程求解即可.【详解】解:设,∵在中,,∴,∴.答:这棵树在离地面6米处被折断【考点】本题考查了勾股定理,熟练掌握勾股定理是解答本题的关键.直角三角形两条直角边的平方和等于斜边的平方.当题目中出现直角三角形,且该直角三角形的一边为待求量时,常使用勾股定理进行求解.有时也可以利用勾股定理列方程求解.2、它至少5.2秒能赶回巢中.【解析】【分析】过点作于点.求出AF,EF,再根据勾股定理求出AE,从而求出时间.【详解】解:如图所示,米,米,米,米.过点作于点.在中,米,米,所以.所以喜鹊离巢的距离米.喜鹊赶回巢所需的时间为(秒).即它至少5.2秒能赶回巢中.【考点】考核知识点:勾股定理和逆定理运用.构造直角三角形是解题关键.3、见解析.【解析】【分析】首先连结,作延长线于,则,根据,易证,再根据,,两者相等,整理即可得证.【详解】证明:连结,作延长线于,则即,∴∴即有:∴【考点】本题考查了勾股定理的证明,用两种方法表示出四边形ADFB的面积是解本题的关键.4、超速了,超速了12km/h【解析】【分析】由勾股定理可求得小汽车行驶的距离,再除以小汽车行驶的时间即为小汽车行驶的车速,再与限速比较即可.【详解】.解:由已知得∴在直角三角形ABC中AB2=AC2+BC2∴BC2=AB2-AC2=,又
∵72-60=12km/h∴这辆小汽车超速了,超速了12km/h.【考点】本题考查了勾股定理,其中1米/秒=3.6千米/时的速度换算是易错点.5、(1)90°;(2)受台风影响,理由见解析【解析】【分析】(1)利用勾股定理的逆定理得出△ABC是直角三角形,进而得出∠ACB的度数;(2)利用三角形面积得出CD的长,进而得出海港C是否受台风影响.【详解】解:(1)∵AC=300km,BC=400km,AB=500km,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°;(2)海港C受台风影响,理由:过点C作CD
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《管理学》课件-07 第七章 协调
- 供应链金融在中小企业融资中的风险管理与创新策略报告
- 工业互联网网络运维 课件 任务5.4 Socket协议配置
- 唐山市政治试题及答案
- 兼职董事管理办法
- 内控机制管理办法
- 内部期限管理办法
- 内部超市管理办法
- 军工监督管理办法
- 军转人员管理办法
- 2025年法理学试题及答案
- 企业钢格栅板常见隐患清单及安全技术要求(附依据)
- 南京市社区工作者招聘笔试真题2024
- (标准)农村地基转让合同协议书
- GB/T 9754-2025色漆和清漆20°、60°和85°光泽的测定
- 快件处理员职业技能模拟试卷含答案
- 2025年7月浙江高中学业水平考试数学试卷真题(含答案详解)
- 山东省济南市历城区2024年八上物理期末统考试题含解析
- 四川省成都市武侯区2024-2025学年八年级下学期期末物理试卷(含答案)
- 高中校长考试试题及答案
- 【化学 东北卷】2025年东北地区高考招生考试真题化学试卷(适用 黑龙江、吉林、辽宁、内蒙古地区)
评论
0/150
提交评论