




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届广东省中学山市中学山纪念中学中考一模数学试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1.一、单选题小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等.设小明打字速度为x个/分钟,则列方程正确的是()A. B. C. D.2.估算的值在(
)A.3和4之间 B.4和5之间 C.5和6之间 D.6和7之间3.如图,在▱ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,已知S△AEF=4,则下列结论:①;②S△BCE=36;③S△ABE=12;④△AEF~△ACD,其中一定正确的是()A.①②③④ B.①④ C.②③④ D.①②③4.如图,在Rt△ABC中,∠C=90°,BC=2,∠B=60°,⊙A的半径为3,那么下列说法正确的是()A.点B、点C都在⊙A内 B.点C在⊙A内,点B在⊙A外C.点B在⊙A内,点C在⊙A外 D.点B、点C都在⊙A外5.如图所示的几何体的俯视图是(
)A. B. C. D.6.在实数π,0,,﹣4中,最大的是()A.π B.0 C. D.﹣47.一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球(不放回),再从余下的2个球中任意摸出1个球则两次摸到的球的颜色不同的概率为()A. B. C. D.8.下列图形中,是中心对称但不是轴对称图形的为()A. B.C. D.9.已知二次函数y=ax2+bx+c的图像经过点(0,m)、(4、m)、(1,n),若n<m,则()A.a>0且4a+b=0 B.a<0且4a+b=0C.a>0且2a+b=0 D.a<0且2a+b=010.如图,在边长为6的菱形中,,以点为圆心,菱形的高为半径画弧,交于点,交于点,则图中阴影部分的面积是()A. B. C. D.二、填空题(本大题共6个小题,每小题3分,共18分)11.在Rt△ABC纸片上剪出7个如图所示的正方形,点E,F落在AB边上,每个正方形的边长为1,则Rt△ABC的面积为_____.12.函数的自变量x的取值范围是_____.13.如图,直线a∥b,∠P=75°,∠2=30°,则∠1=_____.14.如图,在圆心角为90°的扇形OAB中,半径OA=1cm,C为的中点,D、E分别是OA、OB的中点,则图中阴影部分的面积为_____cm1.15.分解因式:mx2﹣6mx+9m=_____.16.分式方程-1=的解是x=________.三、解答题(共8题,共72分)17.(8分)我们已经知道一些特殊的勾股数,如三连续正整数中的勾股数:3、4、5;三个连续的偶数中的勾股数6、8、10;事实上,勾股数的正整数倍仍然是勾股数.另外利用一些构成勾股数的公式也可以写出许多勾股数,毕达哥拉斯学派提出的公式:a=2n+1,b=2n2+2n,c=2n2+2n+1(n为正整数)是一组勾股数,请证明满足以上公式的a、b、c的数是一组勾股数.然而,世界上第一次给出的勾股数公式,收集在我国古代的着名数学着作《九章算术》中,书中提到:当a=(m2﹣n2),b=mn,c=(m2+n2)(m、n为正整数,m>n时,a、b、c构成一组勾股数;利用上述结论,解决如下问题:已知某直角三角形的边长满足上述勾股数,其中一边长为37,且n=5,求该直角三角形另两边的长.18.(8分)一艘货轮往返于上下游两个码头之间,逆流而上需要6小时,顺流而下需要4小时,若船在静水中的速度为20千米/时,则水流的速度是多少千米/时?19.(8分)计算:(﹣2)0+()﹣1+4cos30°﹣|4﹣|20.(8分)已知,抛物线y=x2﹣x+与x轴分别交于A、B两点(A点在B点的左侧),交y轴于点F.(1)A点坐标为;B点坐标为;F点坐标为;(2)如图1,C为第一象限抛物线上一点,连接AC,BF交于点M,若BM=FM,在直线AC下方的抛物线上是否存在点P,使S△ACP=4,若存在,请求出点P的坐标,若不存在,请说明理由;(3)如图2,D、E是对称轴右侧第一象限抛物线上的两点,直线AD、AE分别交y轴于M、N两点,若OM•ON=,求证:直线DE必经过一定点.21.(8分)某市为了解本地七年级学生寒假期间参加社会实践活动情况,随机抽查了部分七年级学生寒假参加社会实践活动的天数(“A﹣﹣﹣不超过5天”、“B﹣﹣﹣6天”、“C﹣﹣﹣7天”、“D﹣﹣﹣8天”、“E﹣﹣﹣9天及以上”),并将得到的数据绘制成如下两幅不完整的统计图.请根据以上的信息,回答下列问题:(1)补全扇形统计图和条形统计图;(2)所抽查学生参加社会实践活动天数的众数是(选填:A、B、C、D、E);(3)若该市七年级约有2000名学生,请你估计参加社会实践“活动天数不少于7天”的学生大约有多少人?22.(10分)据调查,超速行驶是引发交通事故的主要原因之一.小强用所学知识对一条笔直公路上的车辆进行测速,如图所示,观测点C到公路的距离CD=200m,检测路段的起点A位于点C的南偏东60°方向上,终点B位于点C的南偏东45°方向上.一辆轿车由东向西匀速行驶,测得此车由A处行驶到B处的时间为10s.问此车是否超过了该路段16m/s的限制速度?(观测点C离地面的距离忽略不计,参考数据:≈1.41,≈1.73)23.(12分)如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=8,点P从点A出发,沿折线AB﹣BC向终点C运动,在AB上以每秒8个单位长度的速度运动,在BC上以每秒2个单位长度的速度运动,点Q从点C出发,沿CA方向以每秒个单位长度的速度运动,两点同时出发,当点P停止时,点Q也随之停止.设点P运动的时间为t秒.(1)求线段AQ的长;(用含t的代数式表示)(2)当点P在AB边上运动时,求PQ与△ABC的一边垂直时t的值;(3)设△APQ的面积为S,求S与t的函数关系式;(4)当△APQ是以PQ为腰的等腰三角形时,直接写出t的值.24.庞亮和李强相约周六去登山,庞亮从北坡山脚C处出发,以24米/分钟的速度攀登,同时,李强从南坡山脚B处出发.如图,已知小山北坡的坡度,山坡长为240米,南坡的坡角是45°.问李强以什么速度攀登才能和庞亮同时到达山顶A?(将山路AB、AC看成线段,结果保留根号)
参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】
解:因为设小明打字速度为x个/分钟,所以小张打字速度为(x+6)个/分钟,根据关系:小明打120个字所用的时间和小张打180个字所用的时间相等,可列方程得,故选C.【点睛】本题考查列分式方程解应用题,找准题目中的等量关系,难度不大.2、C【解析】
由可知56,即可解出.【详解】∵∴56,故选C.【点睛】此题主要考查了无理数的估算,掌握无理数的估算是解题的关键.3、D【解析】
∵在▱ABCD中,AO=AC,∵点E是OA的中点,∴AE=CE,∵AD∥BC,∴△AFE∽△CBE,∴=,∵AD=BC,∴AF=AD,∴;故①正确;∵S△AEF=4,=()2=,∴S△BCE=36;故②正确;∵=,∴=,∴S△ABE=12,故③正确;∵BF不平行于CD,∴△AEF与△ADC只有一个角相等,∴△AEF与△ACD不一定相似,故④错误,故选D.4、D【解析】
先求出AB的长,再求出AC的长,由B、C到A的距离及圆半径的长的关系判断B、C与圆的关系.【详解】由题意可求出∠A=30°,AB=2BC=4,由勾股定理得AC==2,AB=4>3,AC=2>3,点B、点C都在⊙A外.故答案选D.【点睛】本题考查的知识点是点与圆的位置关系,解题的关键是熟练的掌握点与圆的位置关系.5、B【解析】
根据俯视图是从上往下看得到的图形解答即可.【详解】从上往下看得到的图形是:故选B.【点睛】本题考查三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线6、C【解析】
根据实数的大小比较即可得到答案.【详解】解:∵16<17<25,∴4<<5,∴>π>0>-4,故最大的是,故答案选C.【点睛】本题主要考查了实数的大小比较,解本题的要点在于统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小.7、B【解析】
本题主要需要分类讨论第一次摸到的球是白球还是红球,然后再进行计算.【详解】①若第一次摸到的是白球,则有第一次摸到白球的概率为,第二次,摸到白球的概率为,则有;②若第一次摸到的球是红色的,则有第一次摸到红球的概率为,第二次摸到白球的概率为1,则有,则两次摸到的球的颜色不同的概率为.【点睛】掌握分类讨论的方法是本题解题的关键.8、C【解析】试题分析:根据轴对称图形及中心对称图形的定义,结合所给图形进行判断即可.A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.故选C.考点:中心对称图形;轴对称图形.9、A【解析】
由图像经过点(0,m)、(4、m)可知对称轴为x=2,由n<m知x=1时,y的值小于x=0时y的值,根据抛物线的对称性可知开口方向,即可知道a的取值.【详解】∵图像经过点(0,m)、(4、m)∴对称轴为x=2,则,∴4a+b=0∵图像经过点(1,n),且n<m∴抛物线的开口方向向上,∴a>0,故选A.【点睛】此题主要考查抛物线的图像,解题的关键是熟知抛物线的对称性.10、B【解析】
由菱形的性质得出AD=AB=6,∠ADC=120°,由三角函数求出菱形的高DF,图中阴影部分的面积=菱形ABCD的面积-扇形DEFG的面积,根据面积公式计算即可.【详解】∵四边形ABCD是菱形,∠DAB=60°,
∴AD=AB=6,∠ADC=180°-60°=120°,
∵DF是菱形的高,
∴DF⊥AB,
∴DF=AD•sin60°=6×=3,
∴阴影部分的面积=菱形ABCD的面积-扇形DEFG的面积=6×3=18-9π.
故选B.【点睛】本题考查了菱形的性质、三角函数、菱形和扇形面积的计算;由三角函数求出菱形的高是解决问题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】
如图,设AH=x,GB=y,利用平行线分线段成比例定理,构建方程组求出x,y即可解决问题.【详解】解:如图,设AH=x,GB=y,∵EH∥BC,,∵FG∥AC,,由①②可得x=,y=2,∴AC=,BC=7,∴S△ABC=,故答案为.【点睛】本题考查图形的相似,平行线分线段成比例定理,解题的关键是学会利用参数构建方程组解决问题,属于中考常考题型.12、x≠1【解析】
根据分母不等于2列式计算即可得解.【详解】由题意得,x-1≠2,解得x≠1.故答案为x≠1.【点睛】本题考查的知识点为:分式有意义,分母不为2.13、45°【解析】过P作PM∥直线a,根据平行线的性质,由直线a∥b,可得直线a∥b∥PM,然后根据平行线的性质,由∠P=75°,∠2=30°,可得∠1=∠P-∠2=45°.故答案为45°.点睛:本题考查了平行线的性质的应用,能正确根据平行线的性质进行推理是解此题的关键,注意:两直线平行,内错角相等.14、π+﹣【解析】试题分析:如图,连接OC,EC,由题意得△OCD≌△OCE,OC⊥DE,DE==,所以S四边形ODCE=×1×=,S△OCD=,又S△ODE=×1×1=,S扇形OBC==,所以阴影部分的面积为:S扇形OBC+S△OCD﹣S△ODE=+﹣;故答案为.考点:扇形面积的计算.15、m(x﹣3)1.【解析】
先把m提出来,然后对括号里面的多项式用公式法分解即可。【详解】m=m(=m【点睛】解题的关键是熟练掌握因式分解的方法。16、-5【解析】两边同时乘以(x+3)(x-3),得6-x2+9=-x2-3x,解得:x=-5,检验:当x=-5时,(x+3)(x-3)≠0,所以x=-5是分式方程的解,故答案为:-5.【点睛】本题考查了解分式方程,解题的关键是方程两边同时乘以最简公分母,切记要进行检验.三、解答题(共8题,共72分)17、(1)证明见解析;(2)当n=5时,一边长为37的直角三角形另两边的长分别为12,1.【解析】
(1)根据题意只需要证明a2+b2=c2,即可解答(2)根据题意将n=5代入得到a=(m2﹣52),b=5m,c=(m2+25),再将直角三角形的一边长为37,分别分三种情况代入a=(m2﹣52),b=5m,c=(m2+25),即可解答【详解】(1)∵a2+b2=(2n+1)2+(2n2+2n)2=4n2+4n+1+4n4+8n3+4n2=4n4+8n3+8n2+4n+1,c2=(2n2+2n+1)2=4n4+8n3+8n2+4n+1,∴a2+b2=c2,∵n为正整数,∴a、b、c是一组勾股数;(2)解:∵n=5∴a=(m2﹣52),b=5m,c=(m2+25),∵直角三角形的一边长为37,∴分三种情况讨论,①当a=37时,(m2﹣52)=37,解得m=±3(不合题意,舍去)②当y=37时,5m=37,解得m=(不合题意舍去);③当z=37时,37=(m2+n2),解得m=±7,∵m>n>0,m、n是互质的奇数,∴m=7,把m=7代入①②得,x=12,y=1.综上所述:当n=5时,一边长为37的直角三角形另两边的长分别为12,1.【点睛】此题考查了勾股数和勾股定理,熟练掌握勾股定理是解题关键18、1千米/时【解析】
设水流的速度是x千米/时,则顺流的速度为(20+x)千米/时,逆流的速度为(20﹣x)千米/时,根据由货轮往返两个码头之间,可知顺水航行的距离与逆水航行的距离相等列出方程,解方程即可求解.【详解】设水流的速度是x千米/时,则顺流的速度为(20+x)千米/时,逆流的速度为(20﹣x)千米/时,根据题意得:6(20﹣x)=1(20+x),解得:x=1.答:水流的速度是1千米/时.【点睛】本题考查了一元一次方程的应用,读懂题意,找出等量关系,设出未知数后列出方程是解决此类题目的基本思路.19、4【解析】
直接利用零指数幂的性质以及负指数幂的性质和特殊角的三角函数值、绝对值的性质分别化简进而得出答案.【详解】(﹣2)0+()﹣1+4cos30°﹣|4﹣|=1+3+4×﹣(4﹣2)=4+2﹣4+2=4.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.20、(1)(1,0),(3,0),(0,);(2)在直线AC下方的抛物线上不存在点P,使S△ACP=4,见解析;(3)见解析【解析】
(1)根据坐标轴上点的特点建立方程求解,即可得出结论;(2)在直线AC下方轴x上一点,使S△ACH=4,求出点H坐标,再求出直线AC的解析式,进而得出点H坐标,最后用过点H平行于直线AC的直线与抛物线解析式联立求解,即可得出结论;(3)联立直线DE的解析式与抛物线解析式联立,得出,进而得出,,再由得出,进而求出,同理可得,再根据,即可得出结论.【详解】(1)针对于抛物线,令x=0,则,∴,令y=0,则,解得,x=1或x=3,∴,综上所述:,,;(2)由(1)知,,,∵BM=FM,∴,∵,∴直线AC的解析式为:,联立抛物线解析式得:,解得:或,∴,如图1,设H是直线AC下方轴x上一点,AH=a且S△ACH=4,∴,解得:,∴,过H作l∥AC,∴直线l的解析式为,联立抛物线解析式,解得,∴,即:在直线AC下方的抛物线上不存在点P,使;(3)如图2,过D,E分别作x轴的垂线,垂足分别为G,H,设,,直线DE的解析式为,联立直线DE的解析式与抛物线解析式联立,得,∴,,∵DG⊥x轴,∴DG∥OM,∴,∴,即,∴,同理可得∴,∴,即,∴,∴直线DE的解析式为,∴直线DE必经过一定点.【点睛】本题主要考查了二次函数的综合应用,熟练掌握二次函数与一次函数的综合应用,交点的求法,待定系数法求函数解析式等方法式解决本题的关键.21、(1)见解析;(2)A;(3)800人.【解析】
(1)用A组人数除以它所占的百分比求出样本容量,利用360°乘以对应的百分比即可求得扇形圆心角的度数,再求得时间是8天的人数,从而补全扇形统计图和条形统计图;(2)根据众数的定义即可求解;(3)利用总人数2000乘以对应的百分比即可求解.【详解】解:(1)∵被调查的学生人数为24÷40%=60人,∴D类别人数为60﹣(24+12+15+3)=6人,则D类别的百分比为×100%=10%,补全图形如下:(2)所抽查学生参加社会实践活动天数的众数是A,故答案为:A;(3)估计参加社会实践“活动天数不少于7天”的学生大约有2000×(25%+10%+5%)=800人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22、此车没有超过了该路段16m/s的限制速度.【解析】分析:根据直角三角形的性质和三角函数得出DB,DA,进而解答即可.详解:由题意得:∠DCA=60°,∠DCB=45°,在Rt△CDB中,tan∠DCB=,解得:DB=200,在Rt△CDA中,tan∠DCA=,解得:DA=200,∴AB=DA﹣DB=200﹣200≈146米,轿车速度,答:此车没有超过了该路段16m/s的限制速度.点睛:本题考查了解直角三角形的应用﹣方向角问题,解答本题的关键是利用三角函数求出AD与BD的长度,难度一般.23、(1)4﹣t;(2)当点P在AB边上运动时,PQ与△ABC的一边垂直时t的值是t=0或或;(3)S与t的函数关系式为:S=;(4)t的值为或.【解析】分析:(1)根据勾股定理求出AC的长,然后由AQ=AC-CQ求解即可;(2)当点P在AB边上运动时,PQ与△ABC的一边垂直,有三种情况:当Q在C处,P在A处时,PQ⊥BC;当PQ⊥AB时;当PQ⊥AC时;分别求解即可;(3)当P在AB边上时,即0≤t≤1,作PG⊥AC于G,或当P在边BC上时,即1<t≤3,分别根据三角形的面积求函数的解析式即可;(4)当△APQ是以PQ为腰的等腰三角形时,有两种情况:①当P在边AB上时,作PG⊥AC于G,则AG=GQ,列方程求解;②当P在边AC上时,AQ=PQ,根据勾股定理求解.详解:(1)如图1,Rt△ABC中,∠A=30°,AB=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度老旧房屋交易资金监管协议书
- 2025版钢材仓储居间服务合同
- 二零二五年度实习生实习期间劳动权益保护合同
- 二零二五版科技研发项目风险担保合同与反担保书
- 2025版年度广告宣传策划合同书
- 2025至2031年中国厚膜型防腐涂料行业投资前景及策略咨询研究报告
- 2025至2031年中国动态浊度法鲎试剂行业投资前景及策略咨询研究报告
- 2025至2031年中国不锈钢装饰产品行业投资前景及策略咨询研究报告
- 2025至2030年中国马蛔虫卵切片数据监测研究报告
- 2025至2030年中国速溶绿茶粉数据监测研究报告
- 互联网护理管理
- 骨科降低卧床患者便秘发生率医院护理质量QCC改善案例
- 《业务员基本素质》课件
- 物联网工程专业介绍
- 成人高考成考英语(高起专)试题及答案指导(2025年)
- 血液透析中低血压的预防及处理
- GB/T 2423.17-2024环境试验第2部分:试验方法试验Ka:盐雾
- (高清稿)DB44∕T 2515-2024 水利工程水文化设计导则
- 市场调研表格模板
- JJG(交通) 187-2023 水泥混凝土搅拌机
- (高清版)JTG D81-2017 公路交通安全设施设计规范
评论
0/150
提交评论