版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建龙海第二中学7年级数学下册第五章生活中的轴对称重点解析考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、自新冠肺炎疫情发生以来,莆田市积极普及科学防控知识,下面是科学防控知识的图片,图片上有图案和文字说明,其中的图案是轴对称图是()A.有症状早就医 B.打喷捂口鼻C.防控疫情我们在一起 D.勤洗手勤通风2、如图,北京2022年冬奥会会徽,是将蒙汉两种文字的“冬”字融为一体而成.组成会徽的四个图案中是轴对称图形的是()A. B. C. D.3、如图所示图形中轴对称图形是()A. B. C. D.4、如图为某小区分类垃圾桶上的标识,其图标部分可以看作轴对称图形的有()A.个 B.个 C.个 D.个5、下列是部分防疫图标,其中是轴对称图形的是()A. B. C. D.6、下列有关绿色、环保主题的四个标志中,是轴对称图形是()A. B. C. D.7、下列在线学习平台的图标中,是轴对称图形的是()A. B. C. D.8、下列图形中,是轴对称图形的是()A. B. C. D.9、如图,AD,BE,CF依次是ABC的高、中线和角平分线,下列表达式中错误的是()A.AE=CE B.∠ADC=90° C.∠CAD=∠CBE D.∠ACB=2∠ACF10、点P(5,-3)关于y轴的对称点是()A.(-5,3) B.(-5,-3) C.(5,3) D.(5,-3)第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题2分,共计20分)1、在风筝节活动中,小华用木棒制作了一个风筝,这个风筝可以看作将沿直线翻折,得到(如图所示).若,,,则制作这个风筝大约需要木棒的长度为______cm.2、如图,在中,,点A关于的对称点是,点B关于的对称点是,点C关于的对称点是,若,,则的面积是___________.3、如图,△ABC中,点D在边BC上,将点D分别以AB、AC为对称轴,画出对称点E、F,连接AE、AF.根据图中标示的角度,可知∠EAF=___°.4、下列图形中,一定是轴对称图形的有______________(填序号).(1)线段;(2)三角形;(3)圆;(4)正方形;(5)梯形5、如图,是轴对称图形且只有两条对称轴的是__________(填序号).6、小强站在镜前,从镜中看到镜子对面墙上挂着的电子钟,则如图所示的电子钟的实际时刻是__________.7、如图,在中,,,,将沿折叠,使得点恰好落在边上的点处,折痕为,若点为上一动点,则的周长最小值为___________.8、如图,∠MON内有一点P,P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,GH分别交OM、ON于A、B点,若∠MON=38°,则∠GOH=___9、如图,在平行四边形中,,在内有一点,将向外翻折至,其中为其对称轴,过点,分别作,的垂线,垂足为,,,,已知,,那么__________.10、如图,AC平分∠DCB,CB=CD,DA的延长线交BC于点E,若∠DAC=125°,则∠BAE的度数为______.三、解答题(6小题,每小题10分,共计60分)1、图1是一张三角形纸片ABC.将BC对折使得点C与点B重合,如图2,折痕与BC的交点记为D.(1)请在图2中画出ΔABC的BC边上的中线.(2)若AB=11cm、AC=16cm,求ΔACD与ΔABD的周长差.2、如图,方格纸中每个小方格都是边长为1个单位的正方形,已知的三个顶点在格点上.(1)画出,使它与关于直线a对称;(2)求出的面积;(3)在直线a上画出点P,使最小3、请画出ABC关于直线l对称的(其中分别是A,B,C的对应点,不写画法,保留作图痕迹).4、如图,正三角形网格中,已知两个小三角形被涂黑.(1)再将图中1其余小三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形(画出两种不同的);(2)再将图中2其余小三角形涂黑两个,使整个被涂黑的图案构成一个轴对称图形(画出两种不同的).5、如图,已知线段a和b,直线AB和CD相交于点O.利用尺规(直尺、圆规),按下列要求作图:(1)在射线OA,OB,OC上作线段OA',OB',OC',使它们分别与线段a相等;(2)在射线OD上作线段OD',使OD'与线段b相等;(3)连接A'C',C'B',B'D',D'A';(4)你得到了一个怎样的图形?6、如图,在△ABC中,AD⊥BE,∠DAC=10°,AE是∠BAC的外角∠MAC的平分线,BF平分∠ABC交AE于点F,求∠AFB的度数.-参考答案-一、单选题1、C【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形进行解答即可.【详解】解:A、不是轴对称图形,故A不符合题意;B、不是轴对称图形,故B不符合题意;C、是轴对称图形,故C符合题意;D、不是轴对称图形,故D不符合题意.故选C.【点睛】本题主要考查了轴对称图形,正确掌握轴对称图形的性质是解题关键.2、D【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A不是轴对称图形,故本选项不合题意B不是轴对称图形,故本选项不合题意C不是轴对称图形,故本选项不合题意D是轴对称图形,故本选项符合题意故选D【点睛】本题考察了轴对称图形的概念,熟练掌握应用轴对称图形的定义解决问题是关键点.3、C【分析】根据轴对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,进行逐一判断即可【详解】解:A、不是轴对称图形,不符合题意;B、不是轴对称图形,不符合题意;C、是轴对称图形,符合题意;D、不是轴对称图形,不符合题意;故选C.【点睛】本题主要考查了轴对称图形的识别,熟知轴对称图形的定义是解题的关键.4、B【详解】解:第一个图形可以看作轴对称图形,符合题意;第二个图形不可以看作轴对称图形,不符合题意;第三个图形可以看作轴对称图形,符合题意;第四个图形不可以看作轴对称图形,不符合题意;故选:B.【点睛】本题考查的是轴对称图形的概念,解题的关键是掌握轴对称图形的对称轴,图形两部分折叠后可重合.5、C【分析】直接根据轴对称图形的概念分别解答得出答案.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:选项A、B、D均不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,选项C能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,故选:C.【点睛】本题考查的是轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,解题关键是掌握轴对称图形的概念.6、B【分析】结合轴对称图形的概念进行求解.【详解】解:A、不是轴对称图形,本选项不符合题意;B、是轴对称图形,本选项符合题意;C、不是轴对称图形,本选项不符合题意;D、不是轴对称图形,本选项不符合题意.故选:B.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.7、B【分析】根据轴对称图形定义进行分析即可.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:选项A,C,D都不能找到这样的一条直线,使这些图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;选项B能找到这样的一条直线,使这个图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形.故选:B.【点睛】此题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.8、D【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.【详解】解:选项A、B、C均不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;选项D能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;故选:D.【点睛】本题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.9、C【分析】根据三角形的高、中线和角平分线的定义(1)三角形的角平分线定义:三角形的一个角的平分线与这个角的对边相交,连接这个角的顶点和交点的线段叫做三角形的角平分线;(2)三角形的中线定义:在三角形中,连接一个顶点和它所对边的中点的连线段叫做三角形的中线;(3)三角形的高定义:从三角形一个顶点向它的对边(或对边所在的直线)作垂线,顶点和垂足间的线段叫做三角形的高线,简称为高.求解即可.【详解】解:A、BE是△ABC的中线,所以AE=CE,故本表达式正确;B、AD是△ABC的高,所以∠ADC=90,故本表达式正确;C、由三角形的高、中线和角平分线的定义无法得出∠CAD=∠CBE,故本表达式错误;D、CF是△ABC的角平分线,所以∠ACB=2∠ACF,故本表达式正确.故选:C.【点睛】本题考查了三角形的高、中线和角平分线的定义,是基础题,熟记定义是解题的关键.10、B【分析】根据两点关于y轴对称的特征是两点的横坐标互为相反数,纵坐标不变即可求出点的坐标.【详解】解:∵所求点与点P(5,–3)关于y轴对称,∴所求点的横坐标为–5,纵坐标为–3,∴点P(5,–3)关于y轴的对称点是(–5,–3).故选B.【点睛】本题考查两点关于y轴对称的知识;用到的知识点为:两点关于y轴对称,横坐标互为相反数,纵坐标相同.二、填空题1、310【分析】依据折叠即可得到△ACD≌△ABD,进而得出AB=AC=40cm,CD=BD=70cm,即可得出制作这个风筝大约需要木棒的长度.【详解】解:∵△ACD沿直线AD翻折得到△ABD,∴△ACD≌△ABD,∴AB=AC=40cm,CD=BD=70cm,∴制作这个风筝大约需要木棒的长度为2(40+70)+90=310(cm).故答案为:310.【点睛】本题主要考查了翻折变换,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.2、18【分析】连接B′B,并延长交C′A′于点D,交AC于点E,再根据对称的性质可知C′B=BC,A′B=BA,AC//A′C′,AC=A′C′,且BB′⊥AC,B′E=BE,得B′D=3BE,然后利用三角形面积公式可得到S△A′B′C′=3S△ABC.【详解】解:连接B′B,并延长交C′A′于点D,交AC于点E,如图,∵点B关于AC的对称点是B',∴EB′=EB,BB′⊥AC,∵点C关于AB的对称点是C',∴BC=BC′,∵点A关于BC的对称点是A',∴AB=A′B,而∠ABC=∠A′BC′,∴△ABC≌△A′BC′(SAS),∴∠C=∠A′C′B,AC=A′C′,∴AC∥A′C′,∴DE⊥A′C′,而△ABC≌△A′BC′,∴BD=BE,∴B′D=3BE,∴S△A′B′C′=A′C′×B′E=3××BD×AC=3S△ABC.∵S△ABC=∴S△A′B′C′=故答案为18【点睛】本题考查了轴对称的性质:如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.3、106【分析】连接AD,根据轴对称的性质求出,,再根据三角形的内角和定理求出,最后应用等价代换思想即可求解.【详解】解:如下图所示,连接AD.∵点E和点F是点D分别以AB、AC为对称轴画出的对称点,∴,.∵,,∴.∴.故答案为:106.【点睛】本题考查轴对称的性质,熟练掌握该知识点是解题关键.4、(1)(3)(4)【分析】如果一个图形沿着一条直线对折后,直线两旁的部分完全重合,这样的图形叫做轴对称图形,依据定义即可作出判断.【详解】解:线段的对称轴是其垂直平分线,圆的对称轴是其直径所在的直线,正方形的对称轴是其对角线所在直线和对边中点的连线,(1)(3)(4)是轴对称图形,只有等腰三角形和等腰梯形是轴对称图形,(2)(5)不一定是轴对称图形,故一定是轴对称图形的有(1)(3)(4).故答案为:(1)(3)(4).【点睛】本题主要考查了轴对称图形的定义,解题的关键是正确确定轴对称图形的对称轴.5、①②【分析】一个图形沿一条直线对折,直线两旁的部分能够完全重合,那么这个图形就是轴对称图形,这条直线就是它的一条对称轴,由此即可判断图形的对称轴条数及位置.【详解】图标中,是轴对称图形的有①②③,其中只有2条对称轴的是①②,有4条对称轴的是③。故答案为:①②.【点睛】此题考查了利用轴对称图形的定义判断轴对称图形的对称轴条数的灵活应用,这里要求学生熟记已学过的特殊图形的对称轴特点进行解答.6、21:05【分析】由轴对称图形的性质进行分析即可得到正确答案.【详解】解:由轴对称图形的性质可知,电子钟的实际时刻的数字图与镜子中的数字图成轴对称图形,所以实际时刻是:故答案为:【点睛】本题考查轴对称图形的性质,牢记相关的知识点是解题的关键.7、7【分析】根据折叠可知B和E关于AD对称,由对称的性质得出当F和D重合时,EF+FC的值最小,即此时的周长最小,最小值是EF+FC+EC=BD+CD+EC,先求出EC长,代入求出即可.【详解】解:连接BF由题可知B和E关于AD对称,AB=AE=4,∴BF=FE△CFE的周长为:EF+FC+EC=BF+CD+EC当F和D重合时,BF+CD=BC∵两点之间线段最短∴此时BF+CD的值最小,即此时△CFE的周长最小,最小值是EF+FC+EC=BD+CD+EC=BC+EC,∵EC=AC-AE=6-4=2,∴的周长最小值为:BC+EC=5+2=7,故答案为:7.【点睛】本题考查了折叠性质,轴对称−最短路线问题,关键是确定点F的位置.8、76°【分析】连接OP,根据轴对称的性质可得∠GOM=∠MOP,∠PON=∠NOH,然后求出∠GOH=2∠MON,代入数据计算即可得解.【详解】解:如图,连接OP,∵P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,∴∠GOM=∠MOP,∠PON=∠NOH,∴∠GOH=∠GOM+∠MOP+∠PON+∠NOH=2∠MON,∵∠MON=38°,∴∠GOH=2×38°=76°.故答案为:76°.【点睛】本题考查了轴对称的性质,熟记性质并确定出相等的角是解题的关键.9、36【分析】连接,,根据折叠的性质可得,根据四边形四边形,结合已知条件即可求得.【详解】解:如图,连接,,∵将向外翻折至,其中为其对称轴,∴,∵四边形四边形,∴,∴,故答案为:36.【点睛】本题考查了轴对称的性质,利用四边形四边形结合已知条件计算是解题的关键.10、70°【分析】先根据角平分线的定义得到∠DCA=∠BCA,即可利用SAS证明△DCA≌△BCA得到∠BAC=∠DAC=125°,由∠CAE=180°-∠DAC=55°,则∠BAE=∠BAC-∠CAE=70°.【详解】解:∵AC平分∠DCB,∴∠DCA=∠BCA,又∵CB=CD,CA=CA,∴△DCA≌△BCA(SAS),∴∠BAC=∠DAC=125°,∵∠CAE=180°-∠DAC=55°,∴∠BAE=∠BAC-∠CAE=70°,故答案为:70°.【点睛】本题主要考查了全等三角形的性质与判定,角平分线的定义,解题的关键在于能够熟练掌握全等三角形的性质与判定条件.三、解答题1、(1)见解析;(2)5厘米【分析】(1)由翻折的性质可知BD=DC,然后连接AD即可;(2)由BD=DC可知△ABD与△ACD的周长差等于AB与AC的差.【详解】解:(1)连接AD,∵由翻折的性质可知:BD=DC,∴AD是△ABC的中线.如图所示:(2)∵BD=DC,∴△ADC的周长-△ADB的周长=AC+DC+AD-(AD+AB+DC)=AC-AB=16-11=5cm.【点睛】本题主要考查的是翻折的性质,由翻折的性质得到BD=DC是解题的关键.2、(1)见解析;(2);(3)见解析【分析】(1)分别作点A、B、C关于直线a的对称点A1、B1、C1;顺次连接A1、B1、C1所得的三角形即为所求.(2)用△ABC所在的矩形的面积减去三个小三角形的面积即可求解.(3)依据轴对称的性质,连接C1A(或A1C)与直线a交于点P即可.【详解】(1)如图,△A1B1C1即为所求.(2)=2×2-×1×2×2-×1×1=.(3)如图,连接C1A(或A1C)与直线a交于点P,则
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 辽宁2025年辽宁职业学院招聘23人笔试历年参考题库附带答案详解
- 芜湖2025年安徽芜湖某机关单位招聘派遣工作人员(二)笔试历年参考题库附带答案详解
- 益阳2025年湖南益阳市住房公积金管理中心招聘15人笔试历年参考题库附带答案详解
- 济宁2025年山东济宁嘉祥县教育系统急需紧缺人才引进18人笔试历年参考题库附带答案详解
- 汕尾2025年广东汕尾市市直学校招聘教师13人笔试历年参考题库附带答案详解
- 新疆2025年新疆喀什大学附属中学招聘事业单位工作人员笔试历年参考题库附带答案详解
- 平顶山2025年河南平顶山市卫东区事业单位招聘50人笔试历年参考题库附带答案详解
- 安庆2025年安徽安庆宿松县卫生健康系统部分事业单位招聘22人笔试历年参考题库附带答案详解
- 台州浙江台州玉环市海洋经济发展局招聘编外工作人员笔试历年参考题库附带答案详解
- 南京江苏南京师范大学商学院招聘非事业编制办事员笔试历年参考题库附带答案详解
- 民法典与生活同行宣传手册
- 财务调账管理办法
- 老年医学科老年综合评估表
- 销售内勤年终总结
- 妊娠合并梅毒治疗指南
- 共线清洁验证方案
- 亚马逊运营广告培训
- 北方工业集团 笔试题目
- 环境监测机构质量保证制度
- 酒店消杀方案
- 当前消费者权益保护工作中出现的新情况新问题与对策建议百度文剖析
评论
0/150
提交评论