




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
重庆市南开融侨中学2026届中考数学考前最后一卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1.我国古代数学著作《九章算术》卷七“盈不足”中有这样一个问题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:几个人合伙买一件物品,每人出8元,则余3元;若每人出7元,则少4元,问几人合买?这件物品多少钱?若设有x人合买,这件物品y元,则根据题意列出的二元一次方程组为()A. B. C. D.2.下列计算正确的是()A.(﹣2a)2=2a2 B.a6÷a3=a2C.﹣2(a﹣1)=2﹣2a D.a•a2=a23.已知xa=2,xb=3,则x3a﹣2b等于()A. B.﹣1 C.17 D.724.已知二次函数y=﹣(x﹣h)2+1(为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最大值为﹣5,则h的值为()A.3﹣或1+ B.3﹣或3+C.3+或1﹣ D.1﹣或1+5.如图,电线杆CD的高度为h,两根拉线AC与BC互相垂直(A、D、B在同一条直线上),设∠CAB=α,那么拉线BC的长度为()A. B. C. D.6.一次函数与反比例函数在同一个坐标系中的图象可能是()A. B. C. D.7.有四包真空包装的火腿肠,每包以标准质量450g为基准,超过的克数记作正数,不足的克数记作负数.下面的数据是记录结果,其中与标准质量最接近的是()A.+2 B.﹣3 C.+4 D.﹣18.如图,正比例函数y=x与反比例函数y=4x的图象交于A(2,2)、B(﹣2,﹣2)两点,当y=x的函数值大于A.x>2B.x<﹣2C.﹣2<x<0或0<x<2D.﹣2<x<0或x>29.函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>1;②b+c+1=1;③3b+c+6=1;④当1<x<3时,x2+(b﹣1)x+c<1.其中正确的个数为A.1 B.2 C.3 D.410.x=1是关于x的方程2x﹣a=0的解,则a的值是()A.﹣2 B.2 C.﹣1 D.1二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,矩形纸片ABCD,AD=4,AB=3,如果点E在边BC上,将纸片沿AE折叠,使点B落在点F处,联结FC,当△EFC是直角三角形时,那么BE的长为______.12.如果,那么______.13.现有八个大小相同的矩形,可拼成如图1、2所示的图形,在拼图2时,中间留下了一个边长为2的小正方形,则每个小矩形的面积是_____.14.已知扇形的弧长为,圆心角为45°,则扇形半径为_____.15.不等式组的解集是__.16.如图,利用标杆测量建筑物的高度,已知标杆高1.2,测得,则建筑物的高是__________.三、解答题(共8题,共72分)17.(8分)一辆高铁与一辆动车组列车在长为1320千米的京沪高速铁路上运行,已知高铁列车比动车组列车平均速度每小时快99千米,且高铁列车比动车组列车全程运行时间少3小时,求这辆高铁列车全程运行的时间和平均速度.18.(8分)计算:|﹣2|+2cos30°﹣(﹣)2+(tan45°)﹣119.(8分)解方程:=1.20.(8分)如图,AB是⊙O的直径,D、D为⊙O上两点,CF⊥AB于点F,CE⊥AD交AD的延长线于点E,且CE=CF.(1)求证:CE是⊙O的切线;(2)连接CD、CB,若AD=CD=a,求四边形ABCD面积.21.(8分)如图,直线y=﹣x+2与反比例函数(k≠0)的图象交于A(a,3),B(3,b)两点,过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D.求a,b的值及反比例函数的解析式;若点P在直线y=﹣x+2上,且S△ACP=S△BDP,请求出此时点P的坐标;在x轴正半轴上是否存在点M,使得△MAB为等腰三角形?若存在,请直接写出M点的坐标;若不存在,说明理由.22.(10分)先化简,再求值:1+xx2-123.(12分)如图,AB是⊙O的直径,点C为⊙O上一点,经过C作CD⊥AB于点D,CF是⊙O的切线,过点A作AE⊥CF于E,连接AC.(1)求证:AE=AD.(2)若AE=3,CD=4,求AB的长.24.为了加强学生的安全意识,某校组织了学生参加安全知识竞赛.从中抽取了部分学生成绩(得分数取正整数,满分为100分)进行统计,绘制统计频数分布直方图(未完成)和扇形图如下,请解答下列问题:(1)A组的频数a比B组的频数b小24,样本容量,a为:(2)n为°,E组所占比例为%:(3)补全频数分布直方图;(4)若成绩在80分以上优秀,全校共有2000名学生,估计成绩优秀学生有名.
参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】
根据题意可以找出题目中的等量关系,列出相应的方程组,从而可以解答本题.【详解】由题意可得:,故选D.【点睛】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.2、C【解析】
解:选项A,原式=;选项B,原式=a3;选项C,原式=-2a+2=2-2a;选项D,原式=故选C3、A【解析】∵xa=2,xb=3,∴x3a−2b=(xa)3÷(xb)2=8÷9=,故选A.4、C【解析】
∵当x<h时,y随x的增大而增大,当x>h时,y随x的增大而减小,∴①若h<1≤x≤3,x=1时,y取得最大值-5,可得:-(1-h)2+1=-5,解得:h=1-或h=1+(舍);②若1≤x≤3<h,当x=3时,y取得最大值-5,可得:-(3-h)2+1=-5,解得:h=3+或h=3-(舍).综上,h的值为1-或3+,故选C.点睛:本题主要考查二次函数的性质和最值,根据二次函数的增减性和最值分两种情况讨论是解题的关键.5、B【解析】根据垂直的定义和同角的余角相等,可由∠CAD+∠ACD=90°,∠ACD+∠BCD=90°,可求得∠CAD=∠BCD,然后在Rt△BCD中cos∠BCD=,可得BC=.故选B.点睛:本题主要考查解直角三角形的应用,熟练掌握同角的余角相等和三角函数的定义是解题的关键.6、B【解析】当k>0时,一次函数y=kx﹣k的图象过一、三、四象限,反比例函数y=的图象在一、三象限,∴A、C不符合题意,B符合题意;当k<0时,一次函数y=kx﹣k的图象过一、二、四象限,反比例函数y=的图象在二、四象限,∴D不符合题意.故选B.7、D【解析】试题解析:因为|+2|=2,|-3|=3,|+4|=4,|-1|=1,由于|-1|最小,所以从轻重的角度看,质量是-1的工件最接近标准工件.故选D.8、D【解析】试题分析:观察函数图象得到当﹣2<x<0或x>2时,正比例函数图象都在反比例函数图象上方,即有y=x的函数值大于y=4考点:1.反比例函数与一次函数的交点问题;2.数形结合思想的应用.9、B【解析】分析:∵函数y=x2+bx+c与x轴无交点,∴b2﹣4c<1;故①错误。当x=1时,y=1+b+c=1,故②错误。∵当x=3时,y=9+3b+c=3,∴3b+c+6=1。故③正确。∵当1<x<3时,二次函数值小于一次函数值,∴x2+bx+c<x,∴x2+(b﹣1)x+c<1。故④正确。综上所述,正确的结论有③④两个,故选B。10、B【解析】试题解析:把x=1代入方程1x-a=0得1-a=0,解得a=1.故选B.考点:一元一次方程的解.二、填空题(本大题共6个小题,每小题3分,共18分)11、1.5或3【解析】根据矩形的性质,利用勾股定理求得AC==5,由题意,可分△EFC是直角三角形的两种情况:如图1,当∠EFC=90°时,由∠AFE=∠B=90°,∠EFC=90°,可知点F在对角线AC上,且AE是∠BAC的平分线,所以可得BE=EF,然后再根据相似三角形的判定与性质,可知△ABC∽△EFC,即,代入数据可得,解得BE=1.5;如图2,当∠FEC=90°,可知四边形ABEF是正方形,从而求出BE=AB=3.故答案为1.5或3.点睛:此题主要考查了翻折变换的性质,勾股定理,矩形的性质,正方形的判定与性质,利用勾股定理列方程求解是常用的方法,本题难点在于分类讨论,做出图形更形象直观.12、;【解析】
先对等式进行转换,再求解.【详解】∵∴3x=5x-5y∴2x=5y∴【点睛】本题考查的是分式,熟练掌握分式是解题的关键.13、1.【解析】
设小矩形的长为x,宽为y,则由图1可得5y=3x;由图2可知2y-x=2.【详解】解:设小矩形的长为x,宽为y,则可列出方程组,,解得,则小矩形的面积为6×10=1.【点睛】本题考查了二元一次方程组的应用.14、1【解析】
根据弧长公式l=代入求解即可.【详解】解:∵,∴.故答案为1.【点睛】本题考查了弧长的计算,解答本题的关键是掌握弧长公式:l=.15、2≤x<1【解析】
分别解两个不等式得到x<1和x≥2,然后根据大小小大中间找确定不等数组的解集.【详解】解:,解①得x<1,解②得x≥2,所以不等式组的解集为2≤x<1.故答案为2≤x<1.【点睛】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.16、10.5【解析】
先证△AEB∽△ABC,再利用相似的性质即可求出答案.【详解】解:由题可知,BE⊥AC,DC⊥AC∵BE//DC,∴△AEB∽△ADC,∴,即:,∴CD=10.5(m).故答案为10.5.【点睛】本题考查了相似的判定和性质.利用相似的性质列出含所求边的比例式是解题的关键.三、解答题(共8题,共72分)17、这辆高铁列车全程运行的时间为1小时,平均速度为264千米/小时.【解析】
设动车组列车的平均速度为x千米/小时,则高铁列车的平均速度为(x+99)千米/小时,根据时间=路程÷速度结合高铁列车比动车组列车全程运行时间少3小时,即可得出关于x的分式方程,解之经检验后即可得出结论.【详解】设动车组列车的平均速度为x千米/小时,则高铁列车的平均速度为(x+99)千米/小时,根据题意得:﹣=3,解得:x1=161,x2=﹣264(不合题意,舍去),经检验,x=161是原方程的解,∴x+99=264,1320÷(x+99)=1.答:这辆高铁列车全程运行的时间为1小时,平均速度为264千米/小时.【点睛】本题考查了列分式方程解实际问题的运用及分式方程的解法的运用,解答时根据条件建立方程是关键,解答时对求出的根必须检验,这是解分式方程的必要步骤.18、1【解析】
本题涉及绝对值、特殊角的三角函数值、负指数幂、二次根式化简、乘方5个考点,先针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果即可.【详解】解:原式=2﹣+2×﹣3+1=1.【点睛】本题考查实数的综合运算能力,是各地中考题中常见的计算题型,解决此类题目的关键是熟练掌握绝对值、特殊角的三角函数值、负指数幂、二次根式化简、乘方等考点的运算.19、【解析】
先把分式方程化为整式方程,解整式方程求得x的值,检验即可得分式方程的解.【详解】原方程变形为,方程两边同乘以(2x﹣1),得2x﹣5=1(2x﹣1),解得.检验:把代入(2x﹣1),(2x﹣1)≠0,∴是原方程的解,∴原方程的.【点睛】本题考查了分式方程的解法,把分式方程化为整式方程是解决问题的关键,解分式方程时,要注意验根.20、(1)证明见解析;(2)3【解析】
(1)连接OC,AC,可先证明AC平分∠BAE,结合圆的性质可证明OC∥AE,可得∠OCB=90°,可证得结论;(2)可先证得四边形AOCD为平行四边形,再证明△OCB为等边三角形,可求得CF、AB,利用梯形的面积公式可求得答案.【详解】(1)证明:连接OC,AC.∵CF⊥AB,CE⊥AD,且CE=CF.∴∠CAE=∠CAB.∵OC=OA,∴∠CAB=∠OCA.∴∠CAE=∠OCA.∴OC∥AE.∴∠OCE+∠AEC=180°,∵∠AEC=90°,∴∠OCE=90°即OC⊥CE,∵OC是⊙O的半径,点C为半径外端,∴CE是⊙O的切线.(2)解:∵AD=CD,∴∠DAC=∠DCA=∠CAB,∴DC∥AB,∵∠CAE=∠OCA,∴OC∥AD,∴四边形AOCD是平行四边形,∴OC=AD=a,AB=2a,∵∠CAE=∠CAB,∴CD=CB=a,∴CB=OC=OB,∴△OCB是等边三角形,在Rt△CFB中,CF=CB∴S四边形ABCD=12(DC+AB)•CF=【点睛】本题主要考查切线的判定,掌握切线的两种判定方法是解题的关键,即有切点时连接圆心和切点,然后证明垂直,没有切点时,过圆心作垂直,证明圆心到直线的距离等于半径.21、(1)y=;(2)P(0,2)或(-3,5);(3)M(,0)或(,0).【解析】
(1)利用点在直线上,将点的坐标代入直线解析式中求解即可求出a,b,最后用待定系数法求出反比例函数解析式;(2)设出点P坐标,用三角形的面积公式求出S△ACP=×3×|n+1|,S△BDP=×1×|3−n|,进而建立方程求解即可得出结论;(3)设出点M坐标,表示出MA2=(m+1)2+9,MB2=(m−3)2+1,AB2=32,再三种情况建立方程求解即可得出结论.【详解】(1)∵直线y=-x+2与反比例函数y=(k≠0)的图象交于A(a,3),B(3,b)两点,∴-a+2=3,-3+2=b,∴a=-1,b=-1,∴A(-1,3),B(3,-1),∵点A(-1,3)在反比例函数y=上,∴k=-1×3=-3,∴反比例函数解析式为y=;(2)设点P(n,-n+2),∵A(-1,3),∴C(-1,0),∵B(3,-1),∴D(3,0),∴S△ACP=AC×|xP−xA|=×3×|n+1|,S△BDP=BD×|xB−xP|=×1×|3−n|,∵S△ACP=S△BDP,∴×3×|n+1|=×1×|3−n|,∴n=0或n=−3,∴P(0,2)或(−3,5);(3)设M(m,0)(m>0),∵A(−1,3),B(3,−1),∴MA2=(m+1)2+9,MB2=(m−3)2+1,AB2=(3+1)2+(−1−3)2=32,∵△MAB是等腰三角形,∴①当MA=MB时,∴(m+1)2+9=(m−3)2+1,∴m=0,(舍)②当MA=AB时,∴(m+1)2+9=32,∴m=−1+或m=−1−(舍),∴M(−1+,0)③当MB=AB时,(m−3)2+1=32,∴m=3+或m=3−(舍),∴M(3+,0)即:满足条件的M(−1+,0)或(3+,0).【点睛】此题是反比例函数综合题,主要考查了待定系数法,三角形的面积的求法,等腰三角形的性质,用方程的思想解决问题是解本题的关键.22、3+3【解析】
先化简分式,再计算x的值,最后把x的值代入化简后的分式,计算出结果.【详解】原式=1+x=1+xx+1=1+1=xx-1当x=2cos30°+tan45°=2×32=3+1时.xx-1=【点睛】本题主要考查了分式的加减及锐角三角函数值.解决本题的关键是掌握分式的运算法则和运算顺序.23、(1)证明见解析(2)【解析】
(1)连接OC,根据垂直定义和切线性质定理证出△CAE≌△CAD(AAS),得AE=AD;(2)连接CB,由(1)得AD=AE=3,根据勾股定理得:AC=5,由cos∠EAC=,cos∠CAB==,∠EAC=∠CAB,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 朔州市中医院药学带教资格考核
- 白城市人民医院腹直肌肌皮瓣乳房重建技术考核
- 2025年中国石墨及碳素制品制造项目创业计划书
- 晋城市中医院科室发展战略规划能力考核
- 鄂尔多斯市人民医院意识障碍患者护理考核
- 鄂尔多斯市人民医院血管外科急救护理考核
- 以课标厘清教考关系及其教学实现
- 中国镀钛项目商业计划书
- 中国人造岗石树脂项目投资计划书
- 2025年中国软磁铁氧体项目商业计划书
- 孕产妇全程保健指南
- 2025年省级行业企业职业技能竞赛(老人能力评估师)历年参考题库含答案详解(5套)
- 妊娠和产后甲状腺疾病诊治指南
- 不良贷款清收经验课件
- 航空理论教学课件
- 学堂在线 精确制导器术道 章节测试答案
- 汽车驾驶员(技师)考试题库及答案
- 【MOOC答案】《VLSI设计基础(数字集成电路设计基础)》(东南大学)章节作业慕课答案
- 中国儿童食管狭窄诊治专家共识解读 2
- 注塑质量管理办法
- 数字治理培训课件
评论
0/150
提交评论