版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省大庆市杜尔伯特蒙古族自治县市级名校2026届中考猜题数学试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.今年春节某一天早7:00,室内温度是6℃,室外温度是-2℃,则室内温度比室外温度高()A.-4℃ B.4℃ C.8℃ D.-8℃2.如图,中,,,将绕点逆时针旋转得到,使得,延长交于点,则线段的长为()A.4 B.5 C.6 D.73.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别标有数字1﹣6)朝上一面的数字,任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于()A. B. C. D.4.已知点A、B、C是直径为6cm的⊙O上的点,且AB=3cm,AC=3cm,则∠BAC的度数为()A.15°
B.75°或15°
C.105°或15°
D.75°或105°5.二次函数的对称轴是A.直线 B.直线 C.y轴 D.x轴6.如图是由5个相同的正方体搭成的几何体,其左视图是()A. B.C. D.7.定义:一个自然数,右边的数字总比左边的数字小,我们称之为“下滑数”(如:32,641,8531等).现从两位数中任取一个,恰好是“下滑数”的概率为()A. B. C. D.8.如图,立体图形的俯视图是A. B. C. D.9.利用“分形”与“迭代”可以制作出很多精美的图形,以下是制作出的几个简单图形,其中是轴对称但不是中心对称的图形是()A. B. C. D.10.不等式3x<2(x+2)的解是()A.x>2 B.x<2 C.x>4 D.x<411.如图是由4个相同的正方体搭成的几何体,则其俯视图是()A. B. C. D.12.已知x=1是方程x2+mx+n=0的一个根,则代数式m2+2mn+n2的值为()A.–1B.2C.1D.–2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.等腰△ABC的底边BC=8cm,腰长AB=5cm,一动点P在底边上从点B开始向点C以0.25cm/秒的速度运动,当点P运动到PA与腰垂直的位置时,点P运动的时间应为_____秒.14.抛物线y=x2﹣2x+m与x轴只有一个交点,则m的值为_____.15.我们定义:关于x的函数y=ax2+bx与y=bx2+ax(其中a≠b)叫做互为交换函数.如y=3x2+4x与y=4x2+3x是互为交换函数.如果函数y=2x2+bx与它的交换函数图象顶点关于x轴对称,那么b=_____.16.同学们设计了一个重复抛掷的实验:全班48人分为8个小组,每组抛掷同一型号的一枚瓶盖300次,并记录盖面朝上的次数,下表是依次累计各小组的实验结果.1组1~2组1~3组1~4组1~5组1~6组1~7组1~8组盖面朝上次数16533548363280194911221276盖面朝上频率0.5500.5580.5370.5270.5340.5270.5340.532根据实验,你认为这一型号的瓶盖盖面朝上的概率为____,理由是:____.17.如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=.下列结论:①△APD≌△AEB;②点B到直线AE的距离为;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正确结论的序号是.18.如图,△ABC中,AB=AC,以AC为斜边作Rt△ADC,使∠ADC=90°,∠CAD=∠CAB=26°,E、F分别是BC、AC的中点,则∠EDF等于__________°.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)先化简,再求值÷(x﹣),其中x=.20.(6分)某校七年级(1)班班主任对本班学生进行了“我最喜欢的课外活动”的调查,并将调查结果分为书法和绘画类记为A;音乐类记为B;球类记为C;其他类记为D.根据调查结果发现该班每个学生都进行了等级且只登记了一种自己最喜欢的课外活动.班主任根据调查情况把学生都进行了归类,并制作了如下两幅统计图,请你结合图中所给信息解答下列问题:七年级(1)班学生总人数为_______人,扇形统计图中D类所对应扇形的圆心角为_____度,请补全条形统计图;学校将举行书法和绘画比赛,每班需派两名学生参加,A类4名学生中有两名学生擅长书法,另两名擅长绘画.班主任现从A类4名学生中随机抽取两名学生参加比赛,请你用列表或画树状图的方法求出抽到的两名学生恰好是一名擅长书法,另一名擅长绘画的概率.21.(6分)如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.写出图中小于平角的角.求出∠BOD的度数.小明发现OE平分∠BOC,请你通过计算说明道理.22.(8分)已知,数轴上三个点A、O、P,点O是原点,固定不动,点A和B可以移动,点A表示的数为,点B表示的数为.(1)若A、B移动到如图所示位置,计算的值.(2)在(1)的情况下,B点不动,点A向左移动3个单位长,写出A点对应的数,并计算.(3)在(1)的情况下,点A不动,点B向右移动15.3个单位长,此时比大多少?请列式计算.23.(8分)在平面直角坐标系中,已知点A(2,0),点B(0,2),点O(0,0).△AOB绕着O顺时针旋转,得△A′OB′,点A、B旋转后的对应点为A′、B′,记旋转角为α.(I)如图1,若α=30°,求点B′的坐标;(Ⅱ)如图2,若0°<α<90°,设直线AA′和直线BB′交于点P,求证:AA′⊥BB′;(Ⅲ)若0°<α<360°,求(Ⅱ)中的点P纵坐标的最小值(直接写出结果即可).24.(10分)在平面直角坐标系xOy中,抛物线y=ax2+2ax+c(其中a、c为常数,且a<0)与x轴交于点A(﹣3,0),与y轴交于点B,此抛物线顶点C到x轴的距离为1.(1)求抛物线的表达式;(2)求∠CAB的正切值;(3)如果点P是x轴上的一点,且∠ABP=∠CAO,直接写出点P的坐标.25.(10分)现在,某商场进行促销活动,出售一种优惠购物卡(注:此卡只作为购物优惠凭证不能顶替货款),花300元买这种卡后,凭卡可在这家商场按标价的8折购物.顾客购买多少元金额的商品时,买卡与不买卡花钱相等?在什么情况下购物合算?小张要买一台标价为3500元的冰箱,如何购买合算?小张能节省多少元钱?小张按合算的方案,把这台冰箱买下,如果某商场还能盈利25%,这台冰箱的进价是多少元?26.(12分)图1是某市2009年4月5日至14日每天最低气温的折线统计图.图2是该市2007年4月5日至14日每天最低气温的频数分布直方图,根据图1提供的信息,补全图2中频数分布直方图;在这10天中,最低气温的众数是____,中位数是____,方差是_____.请用扇形图表示出这十天里温度的分布情况.27.(12分)计算:(-1)-1-++|1-3|
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解析】
根据题意列出算式,计算即可求出值.【详解】解:根据题意得:6-(-2)=6+2=8,
则室内温度比室外温度高8℃,
故选:C.【点睛】本题考查了有理数的减法,熟练掌握运算法则是解题的关键.2、B【解析】
先利用已知证明,从而得出,求出BD的长度,最后利用求解即可.【详解】故选:B.【点睛】本题主要考查相似三角形的判定及性质,掌握相似三角形的性质是解题的关键.3、B【解析】
直接得出两位数是3的倍数的个数,再利用概率公式求出答案.【详解】∵一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,十位数为3,则两位数是3的倍数的个数为2.∴得到的两位数是3的倍数的概率为:=.故答案选:B.【点睛】本题考查了概率的知识点,解题的关键是根据题意找出两位数是3的倍数的个数再运用概率公式解答即可.4、C【解析】解:如图1.∵AD为直径,∴∠ABD=∠ACD=90°.在Rt△ABD中,AD=6,AB=3,则∠BDA=30°,∠BAD=60°.在Rt△ABD中,AD=6,AC=3,∠CAD=45°,则∠BAC=105°;如图2,.∵AD为直径,∴∠ABD=∠ABC=90°.在Rt△ABD中,AD=6,AB=3,则∠BDA=30°,∠BAD=60°.在Rt△ABC中,AD=6,AC=3,∠CAD=45°,则∠BAC=15°.故选C.点睛:本题考查的是圆周角定理和锐角三角函数的知识,掌握直径所对的圆周角是直径和熟记特殊角的三角函数值是解题的关键,注意分情况讨论思想的运用.5、C【解析】
根据顶点式y=a(x-h)2+k的对称轴是直线x=h,找出h即可得出答案.【详解】解:二次函数y=x2的对称轴为y轴.
故选:C.【点睛】本题考查二次函数的性质,解题关键是顶点式y=a(x-h)2+k的对称轴是直线x=h,顶点坐标为(h,k).6、A【解析】
根据三视图的定义即可判断.【详解】根据立体图可知该左视图是底层有2个小正方形,第二层左边有1个小正方形.故选A.【点睛】本题考查三视图,解题的关键是根据立体图的形状作出三视图,本题属于基础题型.7、A【解析】分析:根据概率的求法,找准两点:①全部情况的总数:根据题意得知这样的两位数共有90个;
②符合条件的情况数目:从总数中找出符合条件的数共有45个;二者的比值就是其发生的概率.详解:两位数共有90个,下滑数有10、21、20、32、31、30、43、42、41、40、54、53、52、51、50、65、64、63、62、61、60、76、75、74、73、72、71、70、87、86、85、84、83、82、81、80、98、97、96、95、94、93、92、91、90共有45个,
概率为.
故选A.点睛:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.8、C【解析】试题分析:立体图形的俯视图是C.故选C.考点:简单组合体的三视图.9、A【解析】
根据:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.逐个按要求分析即可.【详解】选项A,是轴对称图形,不是中心对称图形,故可以选;选项B,是轴对称图形,也是中心对称图形,故不可以选;选项C,不是轴对称图形,是中心对称图形,故不可以选;选项D,是轴对称图形,也是中心对称图形,故不可以选.故选A【点睛】本题考核知识点:轴对称图形和中心对称图形.解题关键点:理解轴对称图形和中心对称图形定义.
错因分析容易题.失分的原因是:没有掌握轴对称图形和中心对称图形的定义.
10、D【解析】
不等式先展开再移项即可解答.【详解】解:不等式3x<2(x+2),展开得:3x<2x+4,移项得:3x-2x<4,解之得:x<4.故答案选D.【点睛】本题考查了解一元一次不等式,解题的关键是熟练的掌握解一元一次不等式的步骤.11、A【解析】试题分析:从上面看是一行3个正方形.故选A考点:三视图12、C【解析】
把x=1代入x2+mx+n=0,可得m+n=-1,然后根据完全平方公式把m2+2mn+n2变形后代入计算即可.【详解】把x=1代入x2+mx+n=0,代入1+m+n=0,∴m+n=-1,∴m2+2mn+n2=(m+n)2=1.故选C.【点睛】本题考查了方程的根和整体代入法求代数式的值,能使方程两边相等的未知数的值叫做方程的根.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、7秒或25秒.【解析】考点:勾股定理;等腰三角形的性质.专题:动点型;分类讨论.分析:根据等腰三角形三线合一性质可得到BD的长,由勾股定理可求得AD的长,再分两种情况进行分析:①PA⊥AC②PA⊥AB,从而可得到运动的时间.解答:解:如图,作AD⊥BC,交BC于点D,∵BC=8cm,∴BD=CD=12∴AD=AB分两种情况:当点P运动t秒后有PA⊥AC时,∵AP2=PD2+AD2=PC2-AC2,∴PD2+AD2=PC2-AC2,∴PD2+32=(PD+4)2-52∴PD=2.25,∴BP=4-2.25=1.75=0.25t,∴t=7秒,当点P运动t秒后有PA⊥AB时,同理可证得PD=2.25,∴BP=4+2.25=6.25=0.25t,∴t=25秒,∴点P运动的时间为7秒或25秒.点评:本题利用了等腰三角形的性质和勾股定理求解.14、1【解析】
由抛物线y=x2-2x+m与x轴只有一个交点可知,对应的一元二次方程x2-2x+m=2,根的判别式△=b2-4ac=2,由此即可得到关于m的方程,解方程即可求得m的值.【详解】解:∵抛物线y=x2﹣2x+m与x轴只有一个交点,∴△=2,∴b2﹣4ac=22﹣4×1×m=2;∴m=1.故答案为1.【点睛】本题考查了抛物线与x轴的交点问题,注:①抛物线与x轴有两个交点,则△>2;②抛物线与x轴无交点,则△<2;③抛物线与x轴有一个交点,则△=2.15、﹣1【解析】
根据题意可以得到交换函数,由顶点关于x轴对称,从而得到关于b的方程,可以解答本题.【详解】由题意函数y=1x1+bx的交换函数为y=bx1+1x.∵y=1x1+bx=,y=bx1+1x=,函数y=1x1+bx与它的交换函数图象顶点关于x轴对称,∴﹣=﹣且,解得:b=﹣1.故答案为﹣1.【点睛】本题考查了二次函数的性质.理解交换函数的意义是解题的关键.16、0.532,在用频率估计概率时,试验次数越多越接近,所以取1﹣8组的频率值.【解析】
根据用频率估计概率解答即可.【详解】∵在用频率估计概率时,试验次数越多越接近,所以取1﹣8组的频率值,∴这一型号的瓶盖盖面朝上的概率为0.532,故答案为:0.532,在用频率估计概率时,试验次数越多越接近,所以取1﹣8组的频率值.【点睛】本题考查了利用频率估计概率的知识,解答此题关键是用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.17、①③⑤【解析】
①利用同角的余角相等,易得∠EAB=∠PAD,再结合已知条件利用SAS可证两三角形全等;
②过B作BF⊥AE,交AE的延长线于F,利用③中的∠BEP=90°,利用勾股定理可求BE,结合△AEP是等腰直角三角形,可证△BEF是等腰直角三角形,再利用勾股定理可求EF、BF;
③利用①中的全等,可得∠APD=∠AEB,结合三角形的外角的性质,易得∠BEP=90°,即可证;
④连接BD,求出△ABD的面积,然后减去△BDP的面积即可;
⑤在Rt△ABF中,利用勾股定理可求AB2,即是正方形的面积.【详解】①∵∠EAB+∠BAP=90°,∠PAD+∠BAP=90°,
∴∠EAB=∠PAD,
又∵AE=AP,AB=AD,
∵在△APD和△AEB中,
,
∴△APD≌△AEB(SAS);
故此选项成立;
③∵△APD≌△AEB,
∴∠APD=∠AEB,
∵∠AEB=∠AEP+∠BEP,∠APD=∠AEP+∠PAE,
∴∠BEP=∠PAE=90°,
∴EB⊥ED;
故此选项成立;
②过B作BF⊥AE,交AE的延长线于F,
∵AE=AP,∠EAP=90°,
∴∠AEP=∠APE=45°,
又∵③中EB⊥ED,BF⊥AF,
∴∠FEB=∠FBE=45°,
又∵BE=
=
=
,
∴BF=EF=
,
故此选项不正确;
④如图,连接BD,在Rt△AEP中,
∵AE=AP=1,
∴EP=
,
又∵PB=
,
∴BE=
,
∵△APD≌△AEB,
∴PD=BE=
,
∴S
△ABP+S
△ADP=S
△ABD-S
△BDP=
S
正方形ABCD-
×DP×BE=
×(4+
)-
×
×
=
+
.
故此选项不正确.
⑤∵EF=BF=
,AE=1,
∴在Rt△ABF中,AB
2=(AE+EF)
2+BF
2=4+
,
∴S
正方形ABCD=AB
2=4+
,
故此选项正确.
故答案为①③⑤.【点睛】本题考查了全等三角形的判定和性质的运用、正方形的性质的运用、正方形和三角形的面积公式的运用、勾股定理的运用等知识.18、【解析】E、F分别是BC、AC的中点.,∠CAB=26°又∠CAD=26°!三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、6【解析】【分析】括号内先通分进行分式加减运算,然后再与括号外的分式进行乘除运算,化简后代入x的值进行计算即可得.【详解】原式===,当x=,原式==6.【点睛】本题考查了分式的化简求值,根据所给的式子确定运算顺序、熟练应用相关的运算法则是解题的关键.20、48;105°;2【解析】试题分析:根据B的人数和百分比求出总人数,根据D的人数和总人数的得出D所占的百分比,然后得出圆心角的度数,根据总人数求出C的人数,然后补全统计图;记A类学生擅长书法的为A1,擅长绘画的为A2,根据题意画出表格,根据概率的计算法则得出答案.试题解析:(1)12÷25%=48(人)14÷48×360°=105°48-(4+12+14)=18(人),补全图形如下:(2)记A类学生擅长书法的为A1,擅长绘画的为A2,则可列下表:
A1
A1
A2
A2
A1
√
√
A1
√
√
A2
√
√
A2
√
√
∴由上表可得:P(考点:统计图、概率的计算.21、(1)答案见解析(2)155°(3)答案见解析【解析】
(1)根据角的定义即可解决;(2)根据∠BOD=∠DOC+∠BOC,首先利用角平分线的定义和邻补角的定义求得∠DOC和∠BOC即可;(3)根据∠COE=∠DOE﹣∠DOC和∠BOE=∠BOD﹣∠DOE分别求得∠COE与∠BOE的度数即可说明.【详解】(1)图中小于平角的角∠AOD,∠AOC,∠AOE,∠DOC,∠DOE,∠DOB,∠COE,∠COB,∠EOB.(2)因为∠AOC=50°,OD平分∠AOC,所以∠DOC=25°,∠BOC=180°﹣∠AOC=180°﹣50°=130°,所以∠BOD=∠DOC+∠BOC=155°.(3)因为∠DOE=90°,∠DOC=25°,所以∠COE=∠DOE﹣∠DOC=90°﹣25°=65°.又因为∠BOE=∠BOD﹣∠DOE=155°﹣90°=65°,所以∠COE=∠BOE,所以OE平分∠BOC.【点睛】本题考查了角的度数的计算,正确理解角平分线的定义,以及邻补角的定义是解题的关键.22、(1)a+b的值为2;(2)a的值为3,b|a|的值为3;(1)b比a大27.1.【解析】
(1)根据数轴即可得到a,b数值,即可得出结果.(2)由B点不动,点A向左移动1个单位长,可得a=3,b=2,即可求解.(1)点A不动,点B向右移动15.1个单位长,所以a=10,b=17.1,再b-a即可求解.【详解】(1)由图可知:a=10,b=2,∴a+b=2故a+b的值为2.(2)由B点不动,点A向左移动1个单位长,可得a=3,b=2∴b|a|=b+a=23=3故a的值为3,b|a|的值为3.(1)∵点A不动,点B向右移动15.1个单位长∴a=10,b=17.1∴ba=17.1(10)=27.1故b比a大27.1.【点睛】本题主要考查了数轴,关键在于数形结合思想.23、(1)B'的坐标为(,3);(1)见解析;(3)﹣1.【解析】
(1)设A'B'与x轴交于点H,由OA=1,OB=1,∠AOB=90°推出∠ABO=∠B'=30°,由∠BOB'=α=30°推出BO∥A'B',由OB'=OB=1推出OH=OB'=,B'H=3即可得出;(1)证明∠BPA'=90即可;(3)作AB的中点M(1,),连接MP,由∠APB=90°,推出点P的轨迹为以点M为圆心,以MP=AB=1为半径的圆,除去点(1,),所以当PM⊥x轴时,点P纵坐标的最小值为﹣1.【详解】(Ⅰ)如图1,设A'B'与x轴交于点H,∵OA=1,OB=1,∠AOB=90°,∴∠ABO=∠B'=30°,∵∠BOB'=α=30°,∴BO∥A'B',∵OB'=OB=1,∴OH=OB'=,B'H=3,∴点B'的坐标为(,3);(Ⅱ)证明:∵∠BOB'=∠AOA'=α,OB=OB',OA=OA',∴∠OBB'=∠OA'A=(180°﹣α),∵∠BOA'=90°+α,四边形OBPA'的内角和为360°,∴∠BPA'=360°﹣(180°﹣α)﹣(90°+α)=90°,即AA'⊥BB';(Ⅲ)点P纵坐标的最小值为.如图,作AB的中点M(1,),连接MP,∵∠APB=90°,∴点P的轨迹为以点M为圆心,以MP=AB=1为半径的圆,除去点(1,).∴当PM⊥x轴时,点P纵坐标的最小值为﹣1.【点睛】本题考查的知识点是几何变换综合题,解题的关键是熟练的掌握几何变换综合题.24、(4)y=﹣x4﹣4x+3;(4);(3)点P的坐标是(4,0)【解析】
(4)先求得抛物线的对称轴方程,然后再求得点C的坐标,设抛物线的解析式为y=a(x+4)4+4,将点(-3,0)代入求得a的值即可;(4)先求得A、B、C的坐标,然后依据两点间的距离公式可得到BC、AB,AC的长,然后依据勾股定理的逆定理可证明∠ABC=90°,最后,依据锐角三角函数的定义求解即可;(3)连接BC,可证得△AOB是等腰直角三角形,△ACB∽△BPO,可得代入个数据可得OP的值,可得P点坐标.【详解】解:(4)由题意得,抛物线y=ax4+4ax+c的对称轴是直线,∵a<0,抛物线开口向下,又与x轴有交点,∴抛物线的顶点C在x轴的上方,由于抛物线顶点C到x轴的距离为4,因此顶点C的坐标是(﹣4,4).可设此抛物线的表达式是y=a(x+4)4+4,由于此抛物线与x轴的交点A的坐标是(﹣3,0),可得a=﹣4.因此,抛物线的表达式是y=﹣x4﹣4x+3.(4)如图4,点B的坐标是(0,3).连接BC.∵AB4=34+34=48,BC4=44+44=4,AC4=44+44=40,得AB4+BC4=AC4.∴△ABC为直角三角形,∠ABC=90°,所以tan∠CAB=.即∠CAB的正切值等于.(3)如图4,连接BC,∵OA=OB=3,∠AOB=90°,∴△AOB是等腰直角三角形,∴∠BAP=∠ABO=45°,∵∠CAO=∠ABP,∴∠CAB=∠OBP,∵∠ABC=∠BOP=90°,∴△ACB∽△BPO,∴,∴,OP=4,∴点P的坐标是(4,0).【点睛】本题主要考查二次函数的图像与性质,综合性大.25、(1)当顾客消费等于1500元时买卡与不买卡花钱相等;当顾客消费大于1500元时买卡合算;(2)小张买卡合算,能节省400元钱;(3)这台冰箱的进价是2480元.【解析】
(1)设顾客购买x元金额的商品时,买卡与不买卡花钱相等,根据花300元买这种卡后,凭卡可在这家商场按标价的8折购物,列出方程,解方程即可;根据x的值说明在什么情况下购物合算
(2)根据(1)中所求即可得出怎样
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 楼房植物养殖协议书
- 服装腰带采购合同范本
- 施工围挡外包协议书
- 木工材料承包协议书
- 整体衣柜供货协议书
- 防汛水泵采购合同范本
- 驾校转让合同范本模板
- 提前终止合同补充协议
- 设备租赁委托合同范本
- 施工合同无安全协议
- 2025下半年榆林神木市公共服务辅助人员招聘(80人)考试笔试备考试题及答案解析
- 加油员安全操作规程培训考试题及答案解析
- 014《煤矿安全规程》修改条款学习辅导:第十四讲运输、提升和空气压缩机
- 腾讯手机行业消费趋势洞察报告(2025年版)
- AIGC艺术设计 课件全套 第1-8章 艺术设计的新语境:AI的介入 -AIGC艺术设计的思考与展望
- 保洁开荒合同保洁开荒合同
- TSG 51-2023 起重机械安全技术规程
- DB13-T 5611-2022 工业气体空分产品单位产品综合电耗限额
- 中华民族的形成发展 《中华民族大团结》七年级全一册
- 李阳英语十大经典学习方法及精选美文
- 橡胶零件外观检验知识培训
评论
0/150
提交评论