江苏省苏州市2025届九年级上学期期中摸底调研数学试卷(含答案)_第1页
江苏省苏州市2025届九年级上学期期中摸底调研数学试卷(含答案)_第2页
江苏省苏州市2025届九年级上学期期中摸底调研数学试卷(含答案)_第3页
江苏省苏州市2025届九年级上学期期中摸底调研数学试卷(含答案)_第4页
江苏省苏州市2025届九年级上学期期中摸底调研数学试卷(含答案)_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024-2025年九年级上学期期中摸底调研卷

数学学科

(总分:130分;考试时长:120分钟)

第I卷(选择题)

一、单选题(共8小题,每小题3分,满分24分)

1.下列一组数据5,3,4,5,3,3的中位数是()

A.3B.3.5C.4D.4.5

2.二次函数>=-%2+3左-2的图象与V轴的交点坐标为()

A.(0,2)B.(0,-2)C.(-2,0)D.(3,0)

3.下列哪一个函数,其图形与x轴有两个交点()

A.y=18(x+83>+2024B.y=18(尤一83>+2024

C.J=-18(X-83)2-2024D.y=-18(x+83)2+2024

4.某农机厂四月份生产零件40万个,第二季度共生产零件162万个.设该厂五、六月份平均每月的增长

率为x,那么无满足的方程是()

A.40(1+无)2=162

B.40+40(1+x)+40(1+x)2=162

C.40(l+2x)=162

D.40+40(1+龙)+40(1+2无)=162

5.如图①,“东方之门”通过简单的几何曲线处理,将传统文化与现代建筑融为一体,最大程度地传承了苏

州的历史文化.如图②,“门”的内侧曲线呈抛物线形,已知其底部宽度为80米,高度为200米.则离地面

150米处的水平宽度(即8的长)为()

B.30米C.25米D.20米

6.如图,二次函数〉=以2+云+以[。0)的图象过点(_2,0),对称轴为直线1=1,贝!J不等式o^+bx+c>。的

解集为()

A.—2<x<2B.-2<x<4C.xv—2或x>4D.xV-2或%>2

7.若实数x,y,〃满足x+y+〃=2,2x+y-a=4f则代数式2孙-1的值可以是(

A.3B.4C.0D.5

8.如图,在心△ABC中,ZC=90°,AC=3,BC=4,点E在AB边上由点A向点5运动(不与点A,点

5重合),过点E作环垂直A3交直角边于「设=△口面积为y,则y关于1的函数图象大致是

()

第II卷(非选择题)

二、填空题(共8小题,每小题3分,满分24分)

9.一元二次方程N+3广0的解是___.

10.已知抛物线2%—3与1轴交于A、B两点(点A在点5左侧),则线段A5的长为.

[a2-2b(a<b),

11.对于实数〃,b,新定义一种运算“※”:〃※人=L・若%※2=5,则1的值为

b-2a^a>b).-----

12.如图,物体从点A抛出,物体的高度y(单位:m)与飞行时间/(单位:s)近似满足函数关系式

y=-:。-3)2+5.在飞行过程中,若物体在某一个高度时总对应两个不同的时间,则r的取值范围是.

产m

A'、、、

O、%s

13.已知实数根,〃满足/一加+1=0,〃2_々〃+1=0,且小若。23,则代数式—+(〃一1)2的最

小值是—.

14.如果关于x的一元二次方程ax2+bx+c=0有两个实数根,其中一个根为另一个根的g,则称这样的方程

为“半根方程”.例如方程X2-6x+8=0的根为的X1=2,X2=4,则X1=-X2,则称方程x2-6x+8=0为“半根

2

方程”.若方程ax2+bx+c=0是“半根方程”,且点P(a,b)是函数y="x图象上的一动点,则反的值为.

a

15.已知实数机,〃满足机-»=3,则代数式,"?+2〃2-6加-2的最小值等于_.

16.二次函数y=2f的图象如图所示,坐标原点。,点氏,%,以在y轴的正半轴上,点A/,A2,4在二

次函数>=及位于第一象限的图象上,若A4。囱,AA2B1B2,△4&B3都为等腰直角三角形,且点4,4,

4均为直角顶点,则点4的坐标是—.

三、解答题

17.解下列方程:

(1)%2-4尤=1(2)x(2X-1)=3(2尤-1)

18.先化简,再求值:1-六卜三p其中x满足f+3…=0.

19.已知关于x的一元二次方程2f-(a+1)x+“-1=0Q为常数)

(1)当。=2时,求出该一元二次方程实数根;

(2)若X/,X2是这个一元二次方程两根,且为,X2是以行为斜边的直角三角形两直角边,求。的值.

20.一个不透明的袋子中装有四个小球,球面上分别标有数字-1,0,1,2四个数字.这些小球除了数字不

同外,其他都完全相同,袋内小球充分搅匀.

(1)随机地从袋中摸出一个小球,则摸出标有数字2的小球的概率为;

(2)小强设计了如下游戏规则:先从袋中随机摸出一个小球(不放回),然后再从余下的三个小球中随机

摸出一个小球.把2次摸到的小球数字相加,和为奇数,甲获胜;和为偶数,乙获胜.小强设计的游戏规

则公平吗?为什么?(请用画树状图或列表说明理由)

21.2020年东京奥运会于2021年7月23日至8月8日举行,跳水比赛是大家最喜爱观看的项目之一,其

计分规则如下:

a.每次试跳的动作,按照其完成难度的不同对应一个难度系数H;

b.每次试跳都有7名裁判进行打分(0〜10分,分数为0.5的整数倍),在7个得分中去掉2个最高分和2

个最低分,剩下3个得分的平均值为这次试跳的完成分p;

c.运动员该次试跳的得分4=难度系数"X完成分px3

在比赛中,某运动员一次试跳后的打分表为:

难度系数裁判1#2#3#4#5#6#7#

3.5打分7.58.57.59.07.58.58.0

(1)7名裁判打分的众数是;中位数是

(2)该运动员本次试跳的得分是多少?

22.如图,二次函数的图象与x轴相交于A(-3,0)、B(1,0)两点,与y轴相交于点C(0,3),点C、

。是二次函数图象上的一对对称点,一次函数的图象过点3、D.

(1)求。点坐标;

(2)求二次函数的解析式;

(3)根据图象直接写出使一次函数值小于二次函数值的无的取值范围.

23.某牧场准备利用现成的一堵“7”字型的墙面(如图中粗线A-B-C表示墙面,已知4?=3米,

3C=9米)和总长为36米的篱笆围建一个“日”形的饲养场瓦比F(细线表示篱笆,饲养场中间G”也是用

篱笆隔开),如图,点尸可能在线段BC上,也可能在线段BC的延长线上.

(1)当点F在线段BC上时,

①设的长为x米,则。E=米(用含x的代数式表示);

②若要求所围成的饲养场BDEF的面积为66平方米,求饲养场的宽屏';

(3)饲养场的宽E尸为多少米时,饲养场口史F的面积最大?最大面积为多少平方米

,[ab-b2(a>b)

24对于实数a,b,新定义一种运算“※”:。※6=",、,例如:;.4Xl=4xl-12=3

[b--ab(a<b)

(1)计算:2※(-1)=;(-1)派2=;

(2)若X]和X2是方程X2-5尤-6=0的两个根且X/<X2,求X7※尤2的值;

(3)若%※?与3※彳的值相等,求尤的值

25.某服装店以每件42元的价格购进一种服装,由试销知,每天的销售量y(件)与每件的销售价x(元)

之间的函数关系为:y=-3x+204.

(1)若服装店一天销售这种服装的毛利润为360元,求这种服装每件销售价是多少元?(毛利润=销售价-进货

价)

(2)每件服装销售价多少元才能使每天的毛利润最大?最大毛利润是多少?

(3)销售一段时间以后,服装店决定从每天的毛利润中捐出100元给慈善机构,若物价部门规定该产品捐款后

每天剩余毛利润不能超过380元,为了保证捐款后每天剩余毛利润不低于260元,请直接写出这种服装每件

销售价x的范围_______;

26.如图,在平面直角坐标系内,抛物线>=加+6尤-4(存0)与x轴交于点A,点8,与y轴交于点C,

且OB=2OA.过点A的直线y=x+2与抛物线交于点E.点尸为第四象限内抛物线上的一个动点,过点尸

作PHLAE于点H.

(1)抛物线的表达式中,a=,b=;

(2)在点P的运动过程中,若尸H取得最大值,求这个最大值和点P的坐标;

(3)在(2)的条件下,在x轴上求点。,使以A,P,。为顶点的三角形与△ABE相似.

27.如图(1),抛物线y=a(尤+2)(x—8)(a<0)的图像与龙轴交于A、8两点(点A在点8的左侧),与

y轴交于点C,连接AC、BC,若△ABC的面积为20.

(1)求a的值,并判断AASC是什么特殊三角形,说明理由;

(2)如图(2)将△ABC沿尤轴翻折,点C的对称点是点D若点P是抛物线在第一象限图像上的一个动

点,设点P的横坐标为〃7,连接AP、DP,求当机为何值时,AADP的面积最大;

(3)若点。是上述抛物线上一点,且满足求满足条件的点。的坐标.

2024-2025年九年级上学期期中摸底答案

数学学科

参考答案:

题号12345678

答案BBDBACCD

8.D

解:过点。作于点

AB=A/AC2+BC2=732+42=5,

-:-ABxCD=-ACxBC

22f

:.CD=^J=2A,AD=VAC2-CZ)2=V32-2.42=1.8,BD=AB-AD=3.2,

当0<xW1.8,

-.CDIAB,EFLAB,

:.EF\\CD,

:.AAEFS^ADC,

AE—,即二=空

ADCD1.82.4

/.EF=­x,

3

i9

.­.y=-AEx£F=-x2(O<x<1.8),开口向上的一段抛物线;

当1.8<x<5,

同理可证ABEF〜ABDC,

BEEF5-xEF

~BD~~CD即TT-24

:.EF=---x

44

i15Q

,y=—AExEF=—无一―开口向下的一段抛物线;

288

综上,符合题意的函数关系的图象是D;

故选:D.

二、填空题

9.-310.411.-312.0WK6且,。3

439

13.314.-.15.-11.16.(一,—).

322

13.3

解:*.*m2—am+1=0,n2—an+l=0

m2+1=am,n2+1=an,

(m—l)2+(H—l)2

=m2-2m+1+z?-2〃+1

=am-van-2m-2n

=a(m+〃)—2(根+〃)

二(a-2)(m+〃),

••,实数相,〃满足加之一1m+i=o,。〃+1=0,且小

・・・加、及可看作关于x的一元二次方程/―依+1=。的两根,

/.m+n=a,

(m—1)2+(n—l)2=6z(<7—2)=«2—2d!=(4z—l)2—1,

Vl>0,

J当〃>1时,(m-l)2+(n-l)2的值随x的增大而增大,

*/a>3,

・••当a=3时,(加一1『+(〃一1)2有最小值,最小值为(3—1)2—1=3.

故答案为:3.

•・•点P(a,b)是函数y=V^x图象上的一动点,

b=«a,

・••方程化为ax2+^6ax+c=O,

a

・••由韦达定理得:xl+x2=—x2=_^=.

2a

故答案为:y.

15.-11.

*.*m-n2=3,

.\n2=m-3,m>3,

W+2九2-6m-2

=m2+2m-6-6m-2

=m2-4m-8

=(m-2)2-12,

,/(m-2)2>1,

・•・(m-2)2-12>-11,

即代数式m2+2n2-6m-2的最小值等于-11.

故答案为-11.

,/39、

16.(—,—).

22

分别过4,A2,A3作y轴的垂线,垂足分别为A、B、C,

设,OBi=a,BiB2=b,8283=0,则3A2=2b,CAj=^-c,

222

在等腰直角△03/A/中,Ai(~a,-代入>=2/中,得3a=2(—«)2,解得,=1,

■Z11、

・・A/(—,—),

22

在等腰直角△3*2&中,A(gb,1+;。),代入y=2f中,得1+;Z?=2・(/)2,

2解得b=2,

AA2(1,2),

C11

在等腰直角△32A383中,As(—c,3+-),代入丁=2/中,得3+3c=2・(gc)2,解得0=3,

2

39

・・・4(-,-),

22

(2)玉=;,/=3;(3分一题)

(5分,化简正确3分)

19.(1)玉=1,x——;(2)a=5.(第一问2分,第二问3分合计5分)

2

20.(1)}

(1分)

(2)小强设计的游戏规则不公平

画树状图如图:

4分

0

.

和-1

共有12个等可能的结果,两次摸出的小球球面上数字之和为奇数的结果有8种,和为偶数的结果有4种,

oo41

...甲获胜的概率为五=§,乙获胜的概率为万=],

21

V|>-)(5分)

15J

・••小强设计的游戏规则不公平.(6分)

21.(1)7.5,8.0;(每空2分,共4分)

(2)该运动员本次试跳得分为84分.(6分)

22.(1)。(一2,3)(2分)

⑵>=—炉-2%+3(4分)

⑶-2<X<1(6分)

23.(1)①(39-3x);(1分)

②饲养场的宽EP为11米;(3分)

(2)设饲养场BDEF的面积为S,的长为x米.

①当点下在线段BC上时,

根据(1)可得:S=OExEF=(39—3_¥)%=—3—+39》=一3]无一孩)+平,

V^=-3<0,

・••当%1=3?时,S有最大值,最大值为507手,且当工13之¥时,S随X的增大而减小.

•・,当点/在线段3C上时,需满足了之10,

・・.x=10时,S有最大值,最大值为-3x102+39x10=90(平方米).

止匕时的=。£=39—3]=39—3x10=9,满足点尸在线段5C上.(5分)

②当点尸在线段的延长线上时,设。片为y米,

由(1)可得DB=GH=EF=x,DE=BF=y,AD=x-3f

•;BC=9,

:.CF=y-9.

:.DE+CF=36—AD—GH—EF.

,+,-9=36-(%-3)-1一龙.

解得y=;(48-3x).

DE=1(48-3x).

i339

:.S=DEXEF=-(4S-3X)X=--X2+24X=--(X-8)+96.

3

a=—v0,

2

3

.•.当x=8时,S有最大值,最大值为-]X82+24X8=96(平方米).(7分)

此时BF=£>E=1(48-3x)=1(48-3x8)=12,满足点尸在线段BC的延长线上.

•/96>90,

.••饲养场的宽E尸为8米时,饲养场皮)EF的面积最大,最大面积为96平方米.

答:饲养场的宽所为8米时,饲养场的面积最大,最大面积为96平方米.(8分)

24.(1)-3,6;(每空1分,共2分)

(2)石※z=42;(5分)

(3)x的值为1或匕姮或4.

2

(2)J—5%—6=0,

(x-6)(x+1)=0,

Xx<X2,

*,•玉——],%2=6,

%※/=(—1)※6=62—(―l)x6=42,

%※%2=42;

(3)当x<2时,本艮据冰2=3※%,

可得:2之-2x=3x-Y,

解得:±=1,/=4(舍去);(6分)

当2Kx<3时,根据冰2=3Xx,

可得:2x—22=3x—x29

解得:%=x=--(舍去);(7分)

12222

当时,木艮据芯2=3Xx,

可得:2%—22=x2—3xf

解得:石=1(舍去),%2=4;(8分)

综上所述,尤的值为1或生叵或4.

2

25.(1)解:依题意,360=(-3x+204)(x-42),

解得:x=48或x=62;

答:这种服装每件销售价是48元或62元;(2分)

(2)设毛利润为%依题意,

w=(x-42)y=(x-42)(-3x+204)=-3x2+330%-8568,

V-3<0,抛物线开口向下,

w有最大值,当》=一咨=55时,(55-42)(-3x55+204)=507,

2x3

.•.每件服装销售价55元才能使每天的毛利润最大,最大毛利润是507;(6分)

(3)设捐款后的剩余毛利润为V,贝ijy=卬一100=-3/+330x-8568-100=~3x2+330元一8668,

依题意,2604y4380

即260<-3x2+330^-8668<380

即-3x2+330x-8668-260>0.-3x2+330%-8668-380<0®

解方程-3尤2+330元一8668-260=0①,

解得:再=48,%=62,

•抛物线开向下,-3x2+330%-8668-260>0,

48<x<62,

-3x2+330%-8668-380=0®

解得:再=52,%=58,(9分)

;抛物线开向下,一3一+330彳-8668-38040,

xW52或xN58,

48WXW52或58WxW62,

故答案为:48WXW52或58WxW62.(10分)

26.解:(1)由直线y=x+2可得A(-2,0),:.OA=2

VOB=2OA,:.OB=4,即8(4,0)

将A(-2,0)、8(4,0)代入抛物线解析式可得

1

j4«-2&-4=0a=——

[16a+46-4=0解得2

b=-l

故答案为:—,—1(2分)

(2)由(1)得抛物线解析式为y=一工一4

过点P作PMLTW并延长交AE于点N,过点6作底,45,设交42于点。,如下图:

则NPMD=ZAHD=APHN=NEFA=90°,

又,:ZHDA=Z.PDM

:.ZHAD=ZHPN

又:ZPHN=ZEFA

:.APNH^AAEF

PN条即叱*N

~AE

联立直线与抛物线可得

y=x+2

即X2-4X-12=0

y=-x2-x-4f

2

解得玉=6,x2=—2

y=6+2=8,即E(6,8),F(6,0)

,,A尸=8,AE1=\/82+82=8A/2

:.PH=&N,即尸H的最大值,即是尸N的最大值

2

设尸(也;苏-根-4),则N(九利+2)

PN=m+2—(―m2-m—4)=——m2+2m+6=(m—2)2+8

222

:--<0,

2

・,•加=2时,PN最大,为8

此时”,4),加冬8=4应

故答案为:最大值为40,尸(2,4),(6分)

(3)由(2)得尸(2,4),

AT1

又・・・NE4B,都为锐角

・•・ZEAB=ZPAB=45°

当。在A点左侧时,ZPAQ=135°,此时以A,P,。为顶点的三角形与△ABE不相似,所以。在A点右侧,

设Q5,o),IJIIJAQ=n+2

由题意可得:AP=4拒,AB=6,AE=8A/2

AEAB即晅=—,解得〃=当,此时0(当,o)(8分)

当tA尸A。时,—,=

AQAr"+24V233

,,AEAB即平=工,解得〃=1,此时Q(l,0)(10分)

当A时A,—,

APAQ

综上所述,。(弓或

,0)Q(LO)(方法较多,可以不用三角函数)

27.解:(1)令y=0,则0=a(x+2)(x-8)

.*.xi=-2,X2=8

AA(-2,0),B(8,0),AB=10

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论