七年级下学期期末几何压轴题测试数学试题(二)解析_第1页
七年级下学期期末几何压轴题测试数学试题(二)解析_第2页
七年级下学期期末几何压轴题测试数学试题(二)解析_第3页
七年级下学期期末几何压轴题测试数学试题(二)解析_第4页
七年级下学期期末几何压轴题测试数学试题(二)解析_第5页
已阅读5页,还剩45页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一、解答题1.如图1,在平面直角坐标系中,,且满足,过作轴于.(1)求的面积.(2)若过作交轴于,且分别平分,如图2,求的度数.(3)在轴上存在点使得和的面积相等,请直接写出点坐标.2.已知点C在射线OA上.(1)如图①,CDOE,若∠AOB=90°,∠OCD=120°,求∠BOE的度数;(2)在①中,将射线OE沿射线OB平移得O′E'(如图②),若∠AOB=α,探究∠OCD与∠BO′E′的关系(用含α的代数式表示)(3)在②中,过点O′作OB的垂线,与∠OCD的平分线交于点P(如图③),若∠CPO′=90°,探究∠AOB与∠BO′E′的关系.3.如图,直线,一副直角三角板中,.(1)若如图1摆放,当平分时,证明:平分.(2)若如图2摆放时,则(3)若图2中固定,将沿着方向平移,边与直线相交于点,作和的角平分线相交于点(如图3),求的度数.(4)若图2中的周长,现将固定,将沿着方向平移至点与重合,平移后的得到,点的对应点分别是,请直接写出四边形的周长.(5)若图2中固定,(如图4)将绕点顺时针旋转,分钟转半圈,旋转至与直线首次重合的过程中,当线段与的一条边平行时,请直接写出旋转的时间.4.已知,AB∥CD.点M在AB上,点N在CD上.(1)如图1中,∠BME、∠E、∠END的数量关系为:;(不需要证明)如图2中,∠BMF、∠F、∠FND的数量关系为:;(不需要证明)(2)如图3中,NE平分∠FND,MB平分∠FME,且2∠E+∠F=180°,求∠FME的度数;(3)如图4中,∠BME=60°,EF平分∠MEN,NP平分∠END,且EQ∥NP,则∠FEQ的大小是否发生变化,若变化,请说明理由,若不变化,求出∠FEQ的度数.5.如图,,直线与、分别交于点、,点在直线上,过点作,垂足为点.(1)如图1,求证:;(2)若点在线段上(不与、、重合),连接,和的平分线交于点请在图2中补全图形,猜想并证明与的数量关系;6.已知:直线AB∥CD,直线MN分别交AB、CD于点E、F,作射线EG平分∠BEF交CD于G,过点F作FH⊥MN交EG于H.(1)当点H在线段EG上时,如图1①当∠BEG=时,则∠HFG=.②猜想并证明:∠BEG与∠HFG之间的数量关系.(2)当点H在线段EG的延长线上时,请先在图2中补全图形,猜想并证明:∠BEG与∠HFG之间的数量关系.7.阅读下面的文字,解答问题:大家知道是无理数,而无理是无限不循环小数,因此的小数部分我们不可能全部写出来,于是小明用来表示的小数部分,事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是的小数部分,又例如:∵,即,∴的整数部分为2,小数部分为。请解答(1)的整数部分是______,小数部分是_______。(2)如果的小数部分为a,的整数部分为b,求的值。(3)已知x是的整数部分,y是其小数部分,直接写出的值.8.定义:如果,那么称b为n的布谷数,记为.例如:因为,所以,因为,所以.(1)根据布谷数的定义填空:g(2)=________________,g(32)=___________________.(2)布谷数有如下运算性质:若m,n为正整数,则,.根据运算性质解答下列各题:①已知,求和的值;②已知.求和的值.9.下列等式:,,,将以上三个等式两边分别相加得:.(1)观察发现:__________.(2)初步应用:利用(1)的结论,解决以下问题“①把拆成两个分子为1的正的真分数之差,即;②把拆成两个分子为1的正的真分数之和,即;(3)定义“”是一种新的运算,若,,,求的值.10.据说,我国著名数学家华罗庚在一次访问途中,看到飞机邻座的乘客阅读的杂志上有一道智力题:一个数32768,它是一个正数的立方,希望求它的立方根,华罗庚不假思索给出了答案,邻座乘客非常惊奇,很想得知其中的奥秘,你知道华罗庚是怎样准确计算出的吗?请按照下面的问题试一试:(1)由,因为,请确定是______位数;(2)由32768的个位上的数是8,请确定的个位上的数是________,划去32768后面的三位数768得到32,因为,请确定的十位上的数是_____________(3)已知13824和分别是两个数的立方,仿照上面的计算过程,请计算:=____;11.定义:如果,那么称b为n的布谷数,记为.例如:因为,所以,因为,所以.(1)根据布谷数的定义填空:g(2)=________________,g(32)=___________________.(2)布谷数有如下运算性质:若m,n为正整数,则,.根据运算性质解答下列各题:①已知,求和的值;②已知.求和的值.12.我们已经学习了“乘方”运算,下面介绍一种新运算,即“对数”运算.定义:如果(a>0,a≠1,N>0),那么b叫做以a为底N的对数,记作.例如:因为,所以;因为,所以.根据“对数”运算的定义,回答下列问题:(1)填空:,.(2)如果,求m的值.(3)对于“对数”运算,小明同学认为有“(a>0,a≠1,M>0,N>0)”,他的说法正确吗?如果正确,请给出证明过程;如果不正确,请说明理由,并加以改正.13.如图,已知点,,.(1)求的面积;(2)点是在坐标轴上异于点的一点,且的面积等于的面积,求满足条件的点的坐标;(3)若点的坐标为,且,连接交于点,在轴上有一点,使的面积等于的面积,请直接写出点的坐标__________(用含的式子表示).14.已知,定点,分别在直线,上,在平行线,之间有一动点.(1)如图1所示时,试问,,满足怎样的数量关系?并说明理由.(2)除了(1)的结论外,试问,,还可能满足怎样的数量关系?请画图并证明(3)当满足,且,分别平分和,①若,则__________°.②猜想与的数量关系.(直接写出结论)15.如图,在平面直角坐标系中,点O为坐标原点,三角形OAB的边OA、OB分别在x轴正半轴上和y轴正半轴上,A(a,0),a是方程的解,且△OAB的面积为6.(1)求点A、B的坐标;(2)将线段OA沿轴向上平移后得到PQ,点O、A的对应点分别为点P和点Q(点P与点B不重合),设点P的纵坐标为t,△BPQ的面积为S,请用含t的式子表示S;(3)在(2)的条件下,设PQ交线段AB于点K,若PK=,求t的值及△BPQ的面积.16.如果x是一个有理数,我们定义x表示不小于x的最小整数.如3.24,2.62,55,66.由定义可知,任意一个有理数都能写成xxb的形式(0≤b<1).(1)直接写出x与x,x1的大小关系;提示1:用“不完全归纳法”推导x与x,x1的大小关系;提示2:用“代数推理”的方法推导x与x,x1的大小关系.(2)根据(1)中的结论解决下列问题:①直接写出满足3m74的m取值范围;②直接写出方程3.5n22n1的解..17.在平面直角坐标系xOy中,对于给定的两点P,Q,若存在点M,使得△MPQ的面积等于1,即S△MPQ=1,则称点M为线段PQ的“单位面积点”,解答下列问题:如图,在平面直角坐标系xOy中,点P的坐标为(1,0).(1)在点A(1,2),B(﹣1,1),C(﹣1,﹣2),D(2,﹣4)中,线段OP的“单位面积点”是;(2)已知点E(0,3),F(0,4),将线段OP沿y轴向上平移t(t>0)个单位长度,使得线段EF上存在线段OP的“单位面积点”,直接写出t的取值范围.(3)已知点Q(1,﹣2),H(0,﹣1),点M,N是线段PQ的两个“单位面积点”,点M在HQ的延长线上,若S△HMN≥S△PQN,求出点N纵坐标的取值范围.18.在如图所示的平面直角坐标系中,A(1,3),B(3,1),将线段A平移至CD,C(m,-1),D(1,n)(1)m=_____,n=______(2)点P的坐标是(c,0)①设∠ABP=,请写出∠BPD和∠PDC之间的数量关系(用含的式子表示,若有多种数量关系,选择一种加以说明)②当三角形PAB的面积不小于3且不大于10,求点p的横坐标C的取值范围(直接写出答案即可)19.历史上的数学巨人欧拉最先把关于x的多项式用记号f(x)来表示.例如f(x)=x2+3x-5,把x=某数时多项式的值用f(某数)来表示.例如x=-1时多项式x2+3x-5的值记为f(-1)=(-1)2+3×(-1)-5=-7.(1)已知g(x)=-2x2-3x+1,分别求出g(-1)和g(-2);(2)已知h(x)=ax3+2x2-ax-6,当h()=a,求a的值;(3)已知f(x)=--2(a,b为常数),当k无论为何值,总有f(1)=0,求a,b的值.20.如图,已知和的度数满足方程组,且.(1)分别求和的度数;(2)请判断与的位置关系,并说明理由;(3)求的度数.21.数轴上有两个动点M,N,如果点M始终在点N的左侧,我们称作点M是点N的“追赶点”.如图,数轴上有2个点A,B,它们表示的数分别为-3,1,已知点M是点N的“追赶点”,且M,N表示的数分别为m,n.(1)由题意得:点A是点B的“追赶点”,AB=1-(-3)=4(AB表示线段AB的长,以下相同);类似的,MN=____________.(2)在A,M,N三点中,若其中一个点是另外两个点所构成线段的中点,请用含m的代数式来表示n.(3)若AM=BN,MN=BM,求m和n值.22.为鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市居民“一户一表”生活用水阶梯式计费价格表的部分信息,请解答:自来水销售价格每户每月用水量单位:元/吨15吨及以下超过15吨但不超过25吨的部分超过25吨的部分5(1)小王家今年3月份用水20吨,要交水费___________元;(用,的代数式表示)(2)小王家今年4月份用水21吨,交水费48元;邻居小李家4月份用水27吨,交水费70元,求,的值.(3)在第(2)题的条件下,若交水费76.5元,求本月用水量.(4)在第(2)题的条件下,小王家5月份用水量与4月份用水量相同,却发现要比4月份多交9.6元钱水费,小李告诉小王说:“水价调整了,表中表示单位的,的值分别上调了整数角钱(没超过1元),其他都没变.”到底上调了多少角钱呢?请你帮小王求出符合条件的所有可能情况.23.阅读下列文字,请仔细体会其中的数学思想.(1)解方程组,我们利用加减消元法,很快可以求得此方程组的解为;(2)如何解方程组呢?我们可以把m+5,n+3看成一个整体,设m+5=x,n+3=y,很快可以求出原方程组的解为;(3)由此请你解决下列问题:若关于m,n的方程组与有相同的解,求a、b的值.24.在平面直角坐标系中,把线段先向右平移h个单位,再向下平移1个单位得到线段(点A对应点C),其中分别是第三象限与第二象限内的点.(1)若,求C点的坐标;(2)若,连接,过点B作的垂线l①判断直线l与x轴的位置关系,并说明理由;②已知E是直线l上一点,连接,且的最小值为1,若点B,D及点都是关于x,y的二元一次方程的解为坐标的点,试判断是正数、负数还是0?并说明理由.25.小语爸爸开了一家茶叶专卖店,包装设计专业毕业的小语为爸爸设计了一款纸质长方体茶叶包包装盒(纸片厚度不计).如图,阴影部分是裁剪掉的部分,沿图中实线折叠做成的长方体纸盒的上下底面是正方形,有三处长方形形状的“接口”用来折叠后粘贴或封盖.(1)若小语用长,宽的长方形纸片,恰好能做成一个符合要求的包装盒,盒高是盒底边长的倍,三处“接口”的宽度相等.则该茶叶盒的容积是多少?(2)小语爸爸的茶叶专卖店以每盒元购进一批茶叶,按进价增加作为售价,第一个月由于包装粗糙,只售出不到一半但超过三分之一的量;第二个月采用了小语的包装后,马上售完了余下的茶叶,但每盒成本增加了元,售价仍不变,已知在整个买卖过程中共盈利元,求这批茶叶共进了多少盒?26.对于三个数,,,表示,,这三个数的平均数,表示,,这三个数中最小的数,如:,;,.解决下列问题:(1)填空:______;(2)若,求的取值范围;(3)①若,那么______;②根据①,你发现结论“若,那么______”(填,,大小关系);③运用②解决问题:若,求的值.27.在平面直角坐标系中,点,,,且,,满足.(1)请用含的式子分别表示,两点的坐标;(2)当实数变化时,判断的面积是否发生变化?若不变,求其值;若变化,求其变化范围;(3)如图,已知线段与轴相交于点,直线与直线交于点,若,求实数的取值范围.28.对于平面直角坐标系xOy中的任意两点M(x1,y1),N(x2,y2),给出如下定义:将|x1﹣x2|称为点M,N之间的“横长”,|y1﹣y2|称为点M,N之间的纵长”,点M与点N的“横长”与“纵长”之和称为“折线距离”,记作d(M,N)=|x1﹣x2|+|y1﹣y2|“.例如:若点M(﹣1,1),点N(2,﹣2),则点M与点N的“折线距离”为:d(M,N)=|﹣1﹣2|+|1﹣(﹣2)|=3+3=6.根据以上定义,解决下列问题:已知点P(3,2).(1)若点A(a,2),且d(P,A)=5,求a的值;(2)已知点B(b,b),且d(P,B)<3,直接写出b的取值范围;(3)若第一象限内的点T与点P的“横长”与“纵长”相等,且d(P,T)>5,简要分析点T的横坐标t的取值范围.29.某超市投入31500元购进A、B两种饮料共800箱,饮料的成本与销售价如下表:(单位:元/箱)类别成本价销售价A4264B3652(1)该超市购进A、B两种饮料各多少箱?(2)全部售完800箱饮料共盈利多少元?(3)若超市计划盈利16200元,且A类饮料售价不变,则B类饮料销售价至少应定为每箱多少元?30.如图1,在平面直角坐标系中,A(a,0),C(b,2),且满足,过C作轴于B,(1)求a,b的值;(2)在y轴上是否存在点P,使得△ABC和△OCP的面积相等,若存在,求出点P坐标,若不存在,试说明理由.(3)若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图2,图3,①求:∠CAB+∠ODB的度数;②求:∠AED的度数.【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)4;(2);(2)或.【分析】(1)根据非负数的性质易得,,然后根据三角形面积公式计算;(2)过作,根据平行线性质得,且,,所以;然后把代入计算即可;(3)分类讨论:设,当在轴正半轴上时,过作轴,轴,轴,利用可得到关于的方程,再解方程求出;当在轴负半轴上时,运用同样方法可计算出.【详解】解:(1),,,,,,,,的面积;(2)解:轴,,,又∵,∴,过作,如图①,,,,,分别平分,,即:,,;(3)或.解:①当在轴正半轴上时,如图②,设,过作轴,轴,轴,,,解得,②当在轴负半轴上时,如图③,解得,综上所述:或.【点睛】本题考查了平行线的判定与性质:两直线平行,内错角相等.也考查了非负数的性质、坐标与图形性质以及三角形面积公式.构造矩形求三角形面积是解题关键.2.(1)150°;(2)∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′【分析】(1)先根据平行线的性质得到∠AOE的度数,再根据直角、周角的定义即可求得∠BOE的度数;(2)如图②,过O点作OF∥CD,根据平行线的判定和性质可得∠OCD、∠BO′E′的数量关系;(3)由已知推出CP∥OB,得到∠AOB+∠PCO=180°,结合角平分线的定义可推出∠OCD=2∠PCO=360°-2∠AOB,根据(2)∠OCD+∠BO′E′=360°-∠AOB,进而推出∠AOB=∠BO′E′.【详解】解:(1)∵CD∥OE,∴∠AOE=∠OCD=120°,∴∠BOE=360°-∠AOE-∠AOB=360°-90°-120°=150°;(2)∠OCD+∠BO′E′=360°-α.证明:如图②,过O点作OF∥CD,∵CD∥O′E′,∴OF∥O′E′,∴∠AOF=180°-∠OCD,∠BOF=∠E′O′O=180°-∠BO′E′,∴∠AOB=∠AOF+∠BOF=180°-∠OCD+180°-∠BO′E′=360°-(∠OCD+∠BO′E′)=α,∴∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′.证明:∵∠CPO′=90°,∴PO′⊥CP,∵PO′⊥OB,∴CP∥OB,∴∠PCO+∠AOB=180°,∴2∠PCO=360°-2∠AOB,∵CP是∠OCD的平分线,∴∠OCD=2∠PCO=360°-2∠AOB,∵由(2)知,∠OCD+∠BO′E′=360°-α=360°-∠AOB,∴360°-2∠AOB+∠BO′E′=360°-∠AOB,∴∠AOB=∠BO′E′.【点睛】此题考查了平行线的判定和性质,平移的性质,直角的定义,角平分线的定义,正确作出辅助线是解决问题的关键.3.(1)见详解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s【分析】(1)运用角平分线定义及平行线性质即可证得结论;(2)如图2,过点E作EK∥MN,利用平行线性质即可求得答案;(3)如图3,分别过点F、H作FL∥MN,HR∥PQ,运用平行线性质和角平分线定义即可得出答案;(4)根据平移性质可得D′A=DF,DD′=EE′=AF=5cm,再结合DE+EF+DF=35cm,可得出答案;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°,分三种情况:①当BC∥DE时,②当BC∥EF时,③当BC∥DF时,分别求出旋转角度后,列方程求解即可.【详解】(1)如图1,在△DEF中,∠EDF=90°,∠DFE=30°,∠DEF=60°,∵ED平分∠PEF,∴∠PEF=2∠PED=2∠DEF=2×60°=120°,∵PQ∥MN,∴∠MFE=180°−∠PEF=180°−120°=60°,∴∠MFD=∠MFE−∠DFE=60°−30°=30°,∴∠MFD=∠DFE,∴FD平分∠EFM;(2)如图2,过点E作EK∥MN,∵∠BAC=45°,∴∠KEA=∠BAC=45°,∵PQ∥MN,EK∥MN,∴PQ∥EK,∴∠PDE=∠DEK=∠DEF−∠KEA,又∵∠DEF=60°.∴∠PDE=60°−45°=15°,故答案为:15°;(3)如图3,分别过点F、H作FL∥MN,HR∥PQ,∴∠LFA=∠BAC=45°,∠RHG=∠QGH,∵FL∥MN,HR∥PQ,PQ∥MN,∴FL∥PQ∥HR,∴∠QGF+∠GFL=180°,∠RHF=∠HFL=∠HFA−∠LFA,∵∠FGQ和∠GFA的角平分线GH、FH相交于点H,∴∠QGH=∠FGQ,∠HFA=∠GFA,∵∠DFE=30°,∴∠GFA=180°−∠DFE=150°,∴∠HFA=∠GFA=75°,∴∠RHF=∠HFL=∠HFA−∠LFA=75°−45°=30°,∴∠GFL=∠GFA−∠LFA=150°−45°=105°,∴∠RHG=∠QGH=∠FGQ=(180°−105°)=37.5°,∴∠GHF=∠RHG+∠RHF=37.5°+30°=67.5°;(4)如图4,∵将△DEF沿着CA方向平移至点F与A重合,平移后的得到△D′E′A,∴D′A=DF,DD′=EE′=AF=5cm,∵DE+EF+DF=35cm,∴DE+EF+D′A+AF+DD′=35+10=45(cm),即四边形DEAD′的周长为45cm;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°,分三种情况:BC∥DE时,如图5,此时AC∥DF,∴∠CAE=∠DFE=30°,∴3t=30,解得:t=10;BC∥EF时,如图6,∵BC∥EF,∴∠BAE=∠B=45°,∴∠BAM=∠BAE+∠EAM=45°+45°=90°,∴3t=90,解得:t=30;BC∥DF时,如图7,延长BC交MN于K,延长DF交MN于R,∵∠DRM=∠EAM+∠DFE=45°+30°=75°,∴∠BKA=∠DRM=75°,∵∠ACK=180°−∠ACB=90°,∴∠CAK=90°−∠BKA=15°,∴∠CAE=180°−∠EAM−∠CAK=180°−45°−15°=120°,∴3t=120,解得:t=40,综上所述,△ABC绕点A顺时针旋转的时间为10s或30s或40s时,线段BC与△DEF的一条边平行.【点睛】本题主要考查了平行线性质及判定,角平分线定义,平移的性质等,添加辅助线,利用平行线性质是解题关键.4.(1)∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND;(2)120°;(3)不变,30°【分析】(1)过E作EH∥AB,易得EH∥AB∥CD,根据平行线的性质可求解;过F作FH∥AB,易得FH∥AB∥CD,根据平行线的性质可求解;(2)根据(1)的结论及角平分线的定义可得2(∠BME+∠END)+∠BMF-∠FND=180°,可求解∠BMF=60°,进而可求解;(3)根据平行线的性质及角平分线的定义可推知∠FEQ=∠BME,进而可求解.【详解】解:(1)过E作EH∥AB,如图1,∴∠BME=∠MEH,∵AB∥CD,∴HE∥CD,∴∠END=∠HEN,∴∠MEN=∠MEH+∠HEN=∠BME+∠END,即∠BME=∠MEN﹣∠END.如图2,过F作FH∥AB,∴∠BMF=∠MFK,∵AB∥CD,∴FH∥CD,∴∠FND=∠KFN,∴∠MFN=∠MFK﹣∠KFN=∠BMF﹣∠FND,即:∠BMF=∠MFN+∠FND.故答案为∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.(2)由(1)得∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.∵NE平分∠FND,MB平分∠FME,∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,∵2∠MEN+∠MFN=180°,∴2(∠BME+∠END)+∠BMF﹣∠FND=180°,∴2∠BME+2∠END+∠BMF﹣∠FND=180°,即2∠BMF+∠FND+∠BMF﹣∠FND=180°,解得∠BMF=60°,∴∠FME=2∠BMF=120°;(3)∠FEQ的大小没发生变化,∠FEQ=30°.由(1)知:∠MEN=∠BME+∠END,∵EF平分∠MEN,NP平分∠END,∴∠FEN=∠MEN=(∠BME+∠END),∠ENP=∠END,∵EQ∥NP,∴∠NEQ=∠ENP,∴∠FEQ=∠FEN﹣∠NEQ=(∠BME+∠END)﹣∠END=∠BME,∵∠BME=60°,∴∠FEQ=×60°=30°.【点睛】本题主要考查平行线的性质及角平分线的定义,作平行线的辅助线是解题的关键.5.(1)证明见解析;(2)补图见解析;当点在上时,;当点在上时,.【分析】(1)过点作,根据平行线的性质即可求解;(2)分两种情况:当点在上,当点在上,再过点作即可求解.【详解】(1)证明:如图,过点作,∴,∵,∴.∴.∵,∴,∴.(2)补全图形如图2、图3,猜想:或.证明:过点作.∴.∵,∴∴,∴.∵平分,∴.如图3,当点在上时,∵平分,∴,∵,∴,即.如图2,当点在上时,∵平分,∴.∴.即.【点睛】本题考查了平行线的基本性质、角平分线的基本性质及角的运算,解题的关键是准确作出平行线,找出角与角之间的数量关系.6.(1)①18°;②2∠BEG+∠HFG=90°,证明见解析;(2)2∠BEG-∠HFG=90°证明见解析部【分析】(1)①证明2∠BEG+∠HFG=90°,可得结论.②利用平行线的性质证明即可.(2)如图2中,结论:2∠BEG-∠HFG=90°.利用平行线的性质证明即可.【详解】解:(1)①∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°+∠HFG=180°,∴2∠BEG+∠HFG=90°,∵∠BEG=36°,∴∠HFG=18°.故答案为:18°.②结论:2∠BEG+∠HFG=90°.理由:∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°+∠HFG=180°,∴2∠BEG+∠HFG=90°.(2)如图2中,结论:2∠BEG-∠HFG=90°.理由:∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°-∠HFG=180°,∴2∠BEG-∠HFG=90°.【点睛】本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.(1)3;﹣3;(2)4;(3)x﹣y=7﹣.【分析】(1)由3<<4可得答案;(2)由2<<3知a=﹣2,由6<<7知b=6,据此求解可得;(3)由2<<3知5<3+<6,据此得出x、y的值代入计算可得.【详解】(1)∵3<<4,∴的整数部分是3,小数部分是﹣3;故答案为3;﹣3.(2)∵2<<3,∴a=﹣2,∵6<<7,∴b=6,∴a+b﹣=﹣2+6﹣=4.(3)∵2<<3,∴5<3+<6,∴3+的整数部分为x=5,小数部分为y=3+﹣5=﹣2.则x﹣y=5﹣(﹣2)=5﹣+2=7﹣.【点睛】本题考查了估算无理数的大小,解决本题的关键是熟记估算无理数的大小.8.(1)1;5;(2)①3.807,0.807;②;.【分析】(1)根据布谷数的定义把2和32化为底数为2的幂即可得出答案;(2)①根据布谷数的运算性质,g(14)=g(2×7)=g(2)+g(7),,再代入数值可得解;②根据布谷数的运算性质,先将两式化为,,再代入求解.【详解】解:(1)g(2)=g(21)=1,g(32)=g(25)=5;故答案为1,32;(2)①g(14)=g(2×7)=g(2)+g(7),∵g(7)=2.807,g(2)=1,∴g(14)=3.807;g(4)=g(22)=2,∴=g(7)-g(4)=2.807-2=0.807;故答案为3.807,0.807;②∵.∴;.【点睛】本题考查有理数的乘方运算,新定义;能够将新定义的运算转化为有理数的乘方运算是解题的关键.9.(1);;(2)①;②;(3).【分析】(1)利用材料中的“拆项法”解答即可;(2)①先变形为,再利用(1)中的规律解题;②先变形为,再逆用分数的加法法则即可分解;(3)按照定义“”法则表示出,再利用(1)中的规律解题即可.【详解】解:(1)观察发现:,===;故答案是:;.(2)初步应用:①=;②;故答案是:;.(3)由定义可知:====.故的值为.【点睛】考查了有理数运算中的规律型问题:数字的变化规律,有理数的混合运算.本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.10.(1)两;(2)2,3;(3)24,-48.【分析】(1)根据题中所给的分析方法先求出这32768的立方根都是两位数;(2)继续分析求出个位数和十位数即可;(3)利用(1)(2)中材料中的过程进行分析可得结论.【详解】解:(1)由103=1000,1003=1000000,∵1000<32768<100000,∴10<<100,∴是两位数;故答案为:两;(2)∵只有个位数是2的立方数是个位数是8,∴的个位上的数是2划去32768后面的三位数768得到32,因为33=27,43=64,∵27<32<64,∴30<<40.∴的十位上的数是3.故答案为:2,3;(3)由103=1000,1003=1000000,1000<13824<1000000,∴10<<100,∴是两位数;∵只有个位数是4的立方数是个位数是4,∴的个位上的数是4划去13824后面的三位数824得到13,因为23=8,33=27,∵8<13<27,∴20<<30.∴=24;由103=1000,1003=1000000,1000<110592<1000000,∴10<<100,∴是两位数;∵只有个位数是8的立方数是个位数是2,∴的个位上的数是8,划去110592后面的三位数592得到110,因为43=64,53=125,∵64<110<125,∴40<<50.∴=-48;故答案为:24,-48.【点睛】此题考查立方根,解题关键在于理解一个数的立方的个位数就是这个数的个位数的立方的个位数.11.(1)1;5;(2)①3.807,0.807;②;.【分析】(1)根据布谷数的定义把2和32化为底数为2的幂即可得出答案;(2)①根据布谷数的运算性质,g(14)=g(2×7)=g(2)+g(7),,再代入数值可得解;②根据布谷数的运算性质,先将两式化为,,再代入求解.【详解】解:(1)g(2)=g(21)=1,g(32)=g(25)=5;故答案为1,32;(2)①g(14)=g(2×7)=g(2)+g(7),∵g(7)=2.807,g(2)=1,∴g(14)=3.807;g(4)=g(22)=2,∴=g(7)-g(4)=2.807-2=0.807;故答案为3.807,0.807;②∵.∴;.【点睛】本题考查有理数的乘方运算,新定义;能够将新定义的运算转化为有理数的乘方运算是解题的关键.12.(1)1,4;(2)m=10;(3)不正确,改正见解析.【解析】试题分析:(1)根据新定义由61=6、34=81可得log66=1,log381=4;(2)根据定义知m﹣2=23,解之可得;(3)设ax=M,ay=N,则logaM=x、logaN=y,根据ax•ay=ax+y知ax+y=M•N,继而得logaMN=x+y,据此即可得证.试题解析:解:(1)∵61=6,34=81,∴log66=1,log381=4.故答案为:1,4;(2)∵log2(m﹣2)=3,∴m﹣2=23,解得:m=10;(3)不正确,设ax=M,ay=N,则logaM=x,logaN=y(a>0,a≠1,M、N均为正数).∵ax•ay=,∴=M•N,∴logaMN=x+y,即logaMN=logaM+logaN.点睛:本题考查了有理数和整式的混合运算,解题的关键是明确题意,可以利用新定义进行解答问题.13.(1)2;(2);(3)或【分析】(1)直接利用以为底,进行求面积;(2)的面积等于的面积,需要分三种情况进行分类讨论;(3)根据推导出,然后分两种情况进行讨论,即当位于轴负半轴上时与位于轴正半轴上时.【详解】解:(1).(2)作如下图形,进行分类讨论:①当点在轴正半轴上时,,;②当点在轴负半轴上时,,;③当点在轴负半轴上时,,;因此符合条件的点坐标有3个,分别是.(3),,,即与点到的距离相等,,,,由可推出,①位于轴负半轴上时,,,,;②位于轴正半轴上时,,,综上:点的坐标为或.【点睛】本题考查了坐标与图形、三角形的面积、动点问题,解题的关键是要作适当辅助线,进行分类讨论求解.14.(1)∠AEP+∠PFC=∠EPF;(2)∠AEP+∠EPF+∠PFC=360°;(3)①150°或30;②∠EPF+2∠EQF=360°或∠EPF=2∠EQF【分析】(1)由于点是平行线,之间有一动点,因此需要对点的位置进行分类讨论:如图1,当点在的左侧时,,,满足数量关系为:;(2)当点在的右侧时,,,满足数量关系为:;(3)①若当点在的左侧时,;当点在的右侧时,可求得;②结合①可得,由,得出;可得,由,得出.【详解】解:(1)如图1,过点作,,,,,,;(2)如图2,当点在的右侧时,,,满足数量关系为:;过点作,,,,,,;(3)①如图3,若当点在的左侧时,,,,分别平分和,,,;如图4,当点在的右侧时,,,;故答案为:或30;②由①可知:,;,.综合以上可得与的数量关系为:或.【点睛】本题主要考查了平行线的性质,平行公理和及推论等知识点,作辅助线后能求出各个角的度数,是解此题的关键.15.(1)B(0,3);(2)S=(3)4【分析】(1)解方程求出a的值,利用三角形的面积公式构建方程求出b的值即可解决问题;(2)分两种情形分别求解:当点P在线段OB上时,当点P在线段OB的延长线上时;(3)过点K作KH⊥OA用H.根据S△BPK+S△AKH=S△AOB-S长方形OPKH,构建方程求出t,即可解决问题;【详解】解:(1)∵,∴2(a+2)-3(a-2)=6,∴-a+4=0,∴a=4,∴A(4,0),∵S△OAB=6,∴•4•OB=6,∴OB=3,∴B(0,3).(2)当点P在线段OB上时,S=•PQ•PB=×4×(3-t)=-2t+6.当点P在线段OB的延长线上时,S=•PQ•PB=×4×(t-3)=2t-6.综上所述,S=.(3)过点K作KH⊥OA用H.∵S△BPK+S△AKH=S△AOB-S长方形OPKH,∴PK•BP+AH•KH=6-PK•OP,∴××(3-t)+(4-)•t=6-•t,解得t=1,∴S△BPQ=-2t+6=4.【点睛】本题考查三角形综合题,一元一次方程、三角形的面积、平移变换等知识,解题的关键是学会利用参数构建方程解决问题,属于中考压轴题.16.(1);(2)①;②或.【分析】(1)提示1:先列出4个x的值,分别得出与的大小关系,再利用“不完全归纳法”即可得;提示2:先根据“”得出,再根据“”即可得;(2)①根据(1)的结论得出,据此解不等式组即可得;②先根据(1)的结论得出,再解不等式组求出n的取值范围,从而可得的取值范围,然后根据“为整数”可得出方程,由此解方程即可得.【详解】(1)提示1:当时,,则当时,,则当时,,则当时,,则由“不完全归纳法”可得:;提示2:,且;(2)①由(1)的结论得:解得;②由(1)的结论得:解得为整数则或解得或.【点睛】本题考查了一元一次不等式组的应用、解一元一次方程等知识点,理解新定义,正确求解不等式组是解题关键.17.(1),;(2)或;(3)见解析【分析】(1)分别根据三角形的面积计算△OPA,△DPB,△DPC,△OPD的面积即可;(2)分线段OP在线段EF下方和线段OP在线段EF上方分别求解;(3)画出图形,根据S△PQN=1,得到S△HMN≥,分当xN=0时,当xN=2时,分别结合S△HMN≥,得到不等式,求出N点纵坐标的范围.【详解】解:(1)S△OPA=,则点A是线段OP的“单位面积点”,S△OPB=,则点B不是线段OP的“单位面积点”,S△OPC=,则点C是线段OP的“单位面积点”,S△OPD=,则点D不是线段OP的“单位面积点”,(2)设点G是线段OP的“单位面积点”,则S△OPG=1,∵点E的坐标为(0,3),点F的坐标为(0,4),且点G在线段EF上,∴点G的横坐标为0,∵S△OPG=1,线段OP为y轴向上平移t(t>0)个单位长度,当为单位面积点时,当为单位面积点时,综上所述:1≤t≤2或5≤t≤6;(3)∵M,N是线段PQ的两个单位面积点,∴S△PQM=1,S△PQN=1,∵P(1,0),Q(1,-2),∴PQ=2,∴M,N的横坐标为0或2,∵点M在HQ的延长线上,∴点M的横坐标为xM=2,∵S△HMN≥S△PQN,∴S△HMN≥,当xN=0时,S△HMN=,则,∴或;当xN=2时,S△HMN=,则,∴或.【点睛】本题主要考查三角形的面积公式,并且能够理解单位面积点的定义,解题关键是找到单位面积点的轨迹进行求解.18.(1)-1,-3.(2)①当点P在直线AB,CD之间时,∠BPD-∠PDC=α.当点P在直线CD的下方时,∠BPD+∠PDC=α.当点P在直线AB的上方时,∠BPD+∠PDC=α;②-6<m≤1或7≤m<14【分析】(1)由题意,线段AB向左平移2个单位,向下平移4个单位得到线段CD,利用平移规律求解即可.(2)①分三种情形求解,如图1中,当点P在直线AB,CD之间时,∠BPD-∠PDC=α.如图2中,当点P在直线CD的下方时,∠BPD+∠PDC=α.如图3中,当点P在直线AB的上方时,同法可证∠BPD+∠PDC=α.分别利用平行线的性质求解即可.②求出点P在直线AB两侧,△PAB的面积分别为3和10时,m的值,即可判断.【详解】解:(1)由题意,线段AB向左平移2个单位,向下平移4个单位得到线段CD,∵A(1,3),B(3,1),∴C(-1,-1),D(1,-3),∴m=-1,n=-3.故答案为:-1,-3.(2)如图1中,当点P在直线AB,CD之间时,∠BPD-∠PDC=α.理由:过点P作PE∥AB,∵AB∥CD,∴PE∥CD∥AB,∴∠ABP=∠BPE,∠PDC=∠DPE,∴∠BPD-∠PDC=∠BPD-∠DPE=∠BPE=α.如图2中,当点P在直线CD的下方时,∠BPD+∠PDC=α.理由:过点P作PE∥AB,∵AB∥CD,∴PE∥CD∥AB,∴∠ABP=∠BPE,∠PDC=∠DPE,∴∠BPD+∠PDC=∠BPD+∠DPE=∠BPE=α.如图3中,当点P在直线AB的上方时,同法可证∠BPD+∠PDC=α.(3)如图4中,过点B作BH⊥x轴于H,过点A作AT⊥BH交BH于点T,延长AB交x轴于E.当点P在直线AB的下方时,S△PAB=S梯形ATHP-S△ABT-S△PBH=(2+3-m)•3-×2×2-•(3-m)•1=-m+4,当△PAB的面积=3时,-m+4=3,解得m=1,当△PAB的面积=3时,-m+4=10,解得m=-6,∵△ABT是等腰直角三角形,∴∠ABT=45°=∠HBE,∴BH=EH=1,∴E(4,0),根据对称性可知,当点P在直线AB的右侧时,当△PAB的面积=3时,m=7,当△PAB的面积=3时,m=14,观察图象可知,-6<m≤1或7≤m<14.【点睛】本题属于三角形综合题,考查了三角形的面积,平行线的判定和性质等知识,解题的关键是学会利用分割法求三角形面积,学会寻找特殊位置解决问题,属于中考常考题型.19.(1)g(-1)=2g(-2)=-1(2)a=-4(3)a=,b=-4.【解析】【分析】(1)将x=-1和x=-2分别代入可得出答案;(2)将x=代入可得关于a的一元一次方程,解出即可;(3)由f(1)=0,把x=1代入可得关于a、b、k的方程,根据无论k为何值时,都成立就可求出a、b的值.【详解】(1)由题意得:g(-1)=-2×(-1)2-3×(-1)+1=2;g(-2)=-2×(-2)2-3×(-2)+1=-1;(2)由题意得:,解得:a=-4;(3)∵k无论为何值,总有f(1)=0,∴=0,则当k=1、k=0时,可得方程组,解得:.【点睛】本题考查了代数式求值、解一元一次方程、一元一次方程的解、解二元一次方程组等,读懂新定义是解题的关键.20.(1);(2),理由详见解析;(3)40°【分析】(1)利用加减消元法,通过解二元一次方程组可求出和的度数;(2)利用求得的和的度数可得到,于是根据平行线的判定可判断AB∥EF,然后利用平行的传递性可得到AB∥CD;(3)先根据垂直的定义得到,再根据平行线的性质计算的度数.【详解】解(1)解方程组,①-②得:,解得:把代入②得:解得:;(2),理由:∵,,,(同旁内角互补,两直线平行),又,;(3),.【点睛】本题考查了平行线的性质与判定、解二元一次方程组,熟练掌握平行线的性质和判定定理是解题关键.21.(1)n-m;(2)①M是AN的中点,n=2m+3;②A是MN中点,n=-m-6;③N是AM的中点,;(3)或或.【分析】(1)由两点间距离直接求解即可;(2)分三种情况讨论:①M是A、N的中点,n=2m+3;②当A点在M、N点中点时,n=﹣6﹣m;③N是M、A的中点时,n;(3)由已知可得|m+3|=|n﹣1|,n﹣m|m+3|,分情况求解即可.【详解】(1)MN=n﹣m.故答案为:n﹣m;(2)分三种情况讨论:①M是A、N的中点,∴n+(-3)=2m,∴n=2m+3;②A是M、N点中点时,m+n=-3×2,∴n=﹣6﹣m;③N是M、A的中点时,-3+m=2n,∴n;(3)∵AM=BN,∴|m+3|=|n﹣1|.∵MNBM,∴n﹣m|m+3|,∴或或或,∴或或或.∵n>m,∴或或.【点睛】本题考查了列代数式,解二元一次方程组以及数轴上两点间的距离公式,解答本题的关键是:(1)根据两点间的距离公式求出线段AB的长;(2)分三种情况讨论;(3)分四种情况讨论.解决该题型题目时,结合数量关系表示出线段的长度,再根据线段间的关系列出方程是关键.22.;;吨;的值上调了时的值上调了或者的值上调了时的值上调了.【分析】(1)小王家今年3月份用水20吨,超过15吨,所以分两部分计费,15吨及以下费用为,超过15吨的费用为,故总费用;(2)依题意列方程组,可求解;(3)在第(2)题的条件下,正好25吨时,所需费用(元),可知若交水费76.5元,肯定用水超过25吨,可得用水量;(4)由小王家5月份用水量与4月份用水量相同与要比4月份多交9.6元钱水费,可列方程,满足方程的条件的解列出即所求.【详解】解:(1)小王家今年3月份用水20吨,要交消费为,故答案为:;(2)根据题意得,,解得:;(3)在第(2)题的条件下,当正好25吨时,可得费用(元),由交水费76.5元可知,小王家用水量超过25吨,即:超过25吨的用水量吨,合计本月用水量吨(4)设上调了元,上调了元,根据题意得:,,为整数角线(没超过1元),当时,元,当时,元,的值上调了时,的值上调了;的值上调了时,的值上调了.【点睛】本题考查了二元一次方程组的实际应用,并学会看图提练已知,用二元一次方程列举法来表示解.23.(1);(2);(3)a=3,b=2.【分析】(1)利用加减消元法,可以求得;(2)利用换元法,设m+5=x,n+3=y,则方程组化为(1)中的方程组,可求得x,y的值进一步可求出原方程组的解;(3)把am和bn当成一个整体利用已知条件可求出am和bn,再把bn代入2m-bn=-2中求出m的值,然后把m的值代入3m+n=5可求出n的值,继而可求出a、b的值.【详解】解:(1)两个方程相加得,∴,把代入得,∴方程组的解为:;故答案是:;(2)设m+5=x,n+3=y,则原方程组可化为,由(1)可得:,∴m+5=1,n+3=2,∴m=-4,n=-1,∴,故答案是:;(3)由方程组与有相同的解可得方程组,解得,把bn=4代入方程2m﹣bn=﹣2得2m=2,解得m=1,再把m=1代入3m+n=5得3+n=5,解得n=2,把m=1代入am=3得:a=3,把n=2代入bn=4得:b=2,所以a=3,b=2.【点睛】本题主要考查二元一次方程组的解法,重点是考查整体思想及换元法的应用,解题的关键是理解好整体思想.24.(1)(-1,-2);(2)①结论:直线l⊥x轴.证明见解析;②结论:(s-m)+(t-n)=0.证明见解析【分析】(1)利用非负数的性质求出a,b的值,可得结论.(2)①求出A,D的纵坐标,证明AD∥x轴,可得结论.②判断出D(m+1,n-1),利用待定系数法,构建方程组解决问题即可.【详解】解:(1),又,,,,,点先向右平移2个单位,再向下平移1个单位得到点,.(2)①结论:直线轴.理由:,,,向右平移个单位,再向下平移1个单位得到点,,,的纵坐标相同,轴,直线,直线轴.②结论:.理由:是直线上一点,连接,且的最小值为1,,点,及点都是关于,的二元一次方程的解为坐标的点,,①②得到,,③②得到,,,,.【点睛】本题考查坐标与图形变化-平移,非负数的性质,待定系数法等知识,解题的关键是熟练掌握平移变换的性质,学会利用参数解决问题,属于中考常考题型.25.(1);(2)【分析】(1)根据题意设盒底边长,接口的宽度,分别为,,根据题意列方程组,再根据长宽高求得体积;(2)分别设第一个月和第二个月的销售量为盒,根据题意列出方程和不等式组,根据不等式确定二元一次方程的解,两个月的销售总量为盒【详解】(1)设设盒底边长为,接口的宽度为,则盒高是,根据题意得:解得:茶叶盒的容积是:答:该茶叶盒的容积是(2)设第一个月销售了盒,第二个月销售了盒,根据题意得:化简得:①第一个月只售出不到一半但超过三分之一的量即由①得:解得:是整数,所以为5的倍数或者或者答:这批茶叶共进了或者盒.【点睛】本题考查了二元一次方程组的应用,一元一次不等式组的求解,理解题意列出方程组和不等式组是解题的关键.26.(1);(2);(3)①1,②,③【分析】(1)先求出这些数的值,再根据运算规则即可得出答案;(2)先根据运算规则列出不等式组,再进行求解即可得出答案;(3)根据题中规定的表示,,这三个数的平均数,表示,,这三个数中最小的数,列出方程组即可求解.【详解】(1),,故答案为:-4;(2)由题意得:,解得:,则x的取值范围是:;(3),,,;若,则;根据得:,解得:,则,故答案为:1,.【点睛】本题考查了一元一次不等式组的应用,解题关键是读懂题意,根据题意结合方程和不等式去求解,考查综合应用能力.27.(1),;(2)不变,值为;(3)【分析】(1)先解方程组,用含a的式子表示b、c的值,进而可得点A,B,C的坐标.(2)根据S△ABC=S梯形AFGB+S梯形BGHC−S梯形AFHC代入数据计算即可.(3)先解方程组用含a的代数式表示出b,c,根据线段AB在与y轴相交于点E可得关于a的不等式组,解即可得a的一个取值范围,再由2PA≤PC可得2S△AOB≤△S△BOC,然后用含a的代数式表示出2S△AOB与△S△BOC,进而可得关于a的不等式,解不等式可得a的一另个

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论