




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
重庆市兴龙湖中学7年级数学下册第四章三角形专项攻克考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、如图,点,在线段上,与全等,其中点与点,点与点是对应顶点,与交于点,则等于()A. B. C. D.2、如图,在△ABC和△DEF中,∠A=∠D,AF=DC,添加下列条件中的一个仍无法证明△ABC≌△DEF的是()A.BC=EF B.AB=DE C.∠B=∠E D.∠ACB=∠DFE3、如图,点F,C在BE上,AC=DF,BF=EC,AB=DE,AC与DF相交于点G,则与2∠DFE相等的是()A.∠A+∠D B.3∠B C.180°﹣∠FGC D.∠ACE+∠B4、下列各组线段中,能构成三角形的是()A.2、4、7 B.4、5、9 C.5、8、10 D.1、3、65、如图,在中,已知点,,分别为,,的中点,且,则的面积是()A. B.1 C.5 D.6、下列长度的各组线段中,能组成三角形的是()A.1,2,3 B.2,3,5 C.3,4,8 D.3,4,57、如图,在正方形ABCD中,E,F分别为AD,CD上的点,且AE=CF,则下列说法正确的是()A.∠1﹣∠2=90° B.∠1=∠2+45° C.∠1+∠2=180° D.∠1=2∠28、若三条线段中a=3,b=5,c为奇数,那么以a、b、c为边组成的三角形共有()A.1个 B.2个 C.3个 D.4个9、以长为15cm,12cm,8cm、5cm的四条线段中的三条线段为边,可以画出三角形的个数是()A.1个 B.2个 C.3个 D.4个10、下列四个图形中,BE不是△ABC的高线的图是()A. B.C. D.第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题2分,共计20分)1、如图,ABDC,ADBC,AC与BD交于点O,EF经过点O,与AD、BC分别交于点E和F,则图中共有___对全等三角形.2、已知a,b,c是△ABC的三边,化简:|a+b-c|+|b-a-c|=________.3、在新年联欢会上,老师设计了“你说我画”的游戏.游戏规则如下:甲同学需要根据乙同学提供的三个条件画出形状和大小都确定的三角形.已知乙同学说出的前两个条件是“,”.现仅存下列三个条件:①;②;③.为了甲同学画出形状和大小都确定的,乙同学可以选择的条件有:______.(填写序号,写出所有正确答案)4、如图,在Rt△ABC中,∠C=90°,两锐角的角平分线交于点P,点E、F分别在边BC、AC上,且都不与点C重合,若∠EPF=45°,连接EF,当AC=6,BC=8,AB=10时,则△CEF的周长为_____.5、如图,,,、分别为线段和射线上的一点,若点从点出发向点运动,同时点从点出发向点运动,二者速度之比为,运动到某时刻同时停止,在射线上取一点,使与全等,则的长为________.6、如图,线段AC与BD相交于点O,∠A=∠D=90°,要证明△ABC≌△DCB,还需添加的一个条件是____________.(只需填一个条件即可)7、如图,AE与BD相交于点C,AC=EC,BC=DC,AB=5cm,点P从点A出发,沿A→B方向以2cm/s的速度运动,点Q从点D出发,沿D→E方向以1cm/s的速度运动,P、Q两点同时出发.当点P到达点B时,P、Q两点同时停止运动.设点P的运动时间为t(s).(1)AP的长为___cm.(用含t的代数式表示)(2)连接PQ,当线段PQ经过点C时,t=___s.8、如图,∠1=∠2,加上条件_____,可以得到△ADB≌△ADC(SAS).9、如图,为等腰的高,其中分别为线段上的动点,且,当取最小值时,的度数为_____.10、如图,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=50°,连接AC、BD交于点M,连接OM.下列结论:①AC=BD,②∠AMB=50°;③OM平分∠AOD;④MO平分∠AMD.其中正确的结论是_____.(填序号)三、解答题(6小题,每小题10分,共计60分)1、如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC,CE交BA于点D,CE交BF于点M.求证:(1)EC=BF;(2)EC⊥BF.2、如图,点A,B,C,D在一条直线上,,,.求证:.3、如图,点B、F、C、E在同一条直线上,AB=DE,AC=DF,BF=EC.求证:∠A=∠D.4、如图,点、、、在同一直线上,,,.求证:.5、如图,在每个小正方形的边长均相等的网格中,△ABC的顶点均在格点(网格线的交点)上.(1)线段CD将△ABC分成面积相等的两个三角形,且点D在边AB上,画出线段CD.(2)△CBE≌△CBD,且点E在格点上,画出△CBE.6、将一副三角板中的两块直角三角尺的直角顶点C按如图1方式叠放在一起,其中,.(1)若,则的度数为_______;(2)直接写出与的数量关系:_________;(3)直接写出与的数量关系:__________;(4)如图2,当且点E在直线的上方时,将三角尺固定不动,改变三角尺的位置,但始终保持两个三角尺的顶点C重合,这两块三角尺是否存在一组边互相平行?请直接写出角度所有可能的值___________.-参考答案-一、单选题1、D【分析】根据点与点,点与点是对应顶点,得到,根据全等三角形的性质解答.【详解】解:与全等,点与点,点与点是对应顶点,,.故选:D【点睛】本题主要考查了全等三角形的性质,熟练掌握全等三角形的对应边相等,对应角相等是解题的关键.2、A【分析】根据AF=DC求出AC=DF,再根据全等三角形的判定定理逐个判断即可.【详解】解:∵AF=DC,∴AF+FC=DC+FC,即AC=DF,A、BC=EF,AC=DF,∠A=∠D,不符合全等三角形的判定定理,不能推出△ABC≌△DEF,故本选项符合题意;B、AB=DE,∠A=∠D,AC=DF,符合全等三角形的判定定理SAS,能推出△ABC≌△DEF,故本选项不符合题意;C.∠B=∠E,∠A=∠D,AC=DF,符合全等三角形的判定定理AAS,能推出△ABC≌△DEF,故本选项不符合题意;D.∠ACB=∠DFE,AC=DF,∠A=∠D,符合全等三角形的判定定理ASA,能推出△ABC≌△DEF,故本选项不符合题意;故选:A.【点睛】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,两直角三角形全等还有HL.3、C【详解】由题意根据等式的性质得出BC=EF,进而利用SSS证明△ABC与△DEF全等,利用全等三角形的性质得出∠ACB=∠DFE,最后利用三角形内角和进行分析解答.【分析】解:∵BF=EC,∴BF+FC=EC+FC,∴BC=EF,在△ABC与△DEF中,,∴△ABC≌△DEF(SSS),∴∠ACB=∠DFE,∴2∠DFE=180°﹣∠FGC,故选:C.【点睛】本题考查全等三角形的判定与性质,其中全等三角形的判定方法有:SSS;SAS;ASA;AAS;以及HL(直角三角形的判定方法).4、C【分析】根据三角形的三边关系定理逐项判断即可得.【详解】解:三角形的三边关系定理:任意两边之和大于第三边.A、,不能构成三角形,此项不符题意;B、,不能构成三角形,此项不符题意;C、,能构成三角形,此项符合题意;D、,不能构成三角形,此项不符题意;故选:C.【点睛】本题考查了三角形的三边关系定理,熟练掌握三角形的三边关系定理是解题关键.5、B【分析】根据三角形面积公式由点为的中点得到,同理得到,则,然后再由点为的中点得到.【详解】解:点为的中点,,点为的中点,,,点为的中点,.故选:.【点睛】本题考查了三角形的中线与面积的关系,解题的关键是掌握是三角形的中线把三角形的面积平均分成两半.6、D【分析】根据两边之和大于第三边,两边之差小于第三边判断即可.【详解】∵1+2=3,∴A不能构成三角形;∵3+2=5,∴B不能构成三角形;∵3+4<8,∴C不能构成三角形;∵∵3+4>5,∴D能构成三角形;故选D.【点睛】本题考查了三角形的三边关系定理,熟练掌握性质定理是解题的关键.7、C【分析】由“SAS”可证△ABE≌△CBF,可得∠AEB=∠2,即可求解.【详解】解:∵四边形ABCD是正方形,∴AB=BC,∠A=∠C=90°,在△ABE和△CBF中,,∴△ABE≌△CBF(SAS),∴∠AEB=∠2,∵∠AEB+∠1=180°,∴∠1+∠2=180°,故选:C.【点睛】本题考查了正方形的性质,全等三角形的判定和性质,证明三角形全等是解题的关键.8、C【分析】根据三角形的三边关系,得到合题意的边,进而求得三角形的个数.【详解】解:c的范围是:5﹣3<c<5+3,即2<c<8.∵c是奇数,∴c=3或5或7,有3个值.则对应的三角形有3个.故选:C.【点睛】本题主要考查了三角形三边关系,准确分析判断是解题的关键.9、C【分析】从4条线段里任取3条线段组合,可有4种情况,看哪种情况不符合三角形三边关系,舍去即可.【详解】解:首先可以组合为15cm,12cm,8cm;15cm,12cm,5cm;15cm,8cm、5cm;12cm,8cm、5cm.再根据三角形的三边关系,发现其中的12cm,8cm、5cm不符合,则可以画出的三角形有3个.故选:C.【点睛】本题考查了三角形的三边关系:即任意两边之和大于第三边,任意两边之差小于第三边.这里一定要首先把所有的情况组合后,再看是否符合三角形的三边关系.10、C【分析】利用三角形的高的定义可得答案.【详解】解:BE不是△ABC的高线的图是C,故选:C.【点睛】此题主要考查了三角形的高,关键是掌握从三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高.二、填空题1、6【分析】根据平行线的性质得出∠DAC=∠BCA,∠DCA=∠BAC,根据全等三角形的判定定理ASA可以推出△ABC≌△CDA,△ABD≌△CDB,根据全等三角形的性质得出AD=CB,AB=CD根据全等三角形的判定定理AAS推出△AOB≌△COD,△AOD≌△COB,根据全等三角形的性质定理得出AO=CO,BO=DO,根据全等三角形的判定定理ASA推出△AOE≌△COF,△DOE≌△BOF即可.【详解】解:∵ABDC,ADBC,∴∠DAC=∠BCA,∠DCA=∠BAC,在△ABC和△CDA中,∴△ABC≌△CDA(ASA),∴AD=CB,AB=CD,同理△ABD≌△CDB,在△AOB和△COD中,∴△AOB≌△COD(AAS),同理△AOD≌△COB,∴AO=CO,BO=DO,在△AOE和△COF中,∴△AOE≌△COF同理△DOE≌△BOF.【点睛】本题考查了全等三角形的判定定理和性质定理,平行线的性质等知识点,能熟记全等三角形的判定定理和性质定理是解此题的关键,注意:①全等三角形的判定定理有SAS,ASA,AAS,SSS两直角三角形全等还有HL等,②全等三角形的对应边相等,对应角相等.2、【分析】首先利用三角形的三边关系得出,然后根据求绝对值的法则进行化简即可.【详解】解:∵是的三条边,∴,∴=.故答案为:.【点睛】熟悉三角形的三边关系和求绝对值的法则,是解题的关键,注意,去绝对值后,要先添加括号,再去括号,这样不容易出错.|a+b-c|+|b-a-c|3、②【分析】根据两边及其夹角对应相等的两个三角形全等,即可求解.【详解】解:①若选,是边边角,不能得到形状和大小都确定的;②若选,是边角边,能得到形状和大小都确定的;③若选,是边边角,不能得到形状和大小都确定的;所以乙同学可以选择的条件有②.故答案为:②【点睛】本题主要考查了全等三角形的判定,熟练掌握两边及其夹角对应相等的两个三角形全等是解题的关键.4、4【分析】根据题意过点P作PM⊥BC于M,PN⊥AC于N,PK⊥AB于K,在EB上取一点J,使得MJ=FN,连接PJ,进而利用全等三角形的性质证明EF=EM+EN,即可得出结论.【详解】解:如图,过点P作PM⊥BC于M,PN⊥AC于N,PK⊥AB于K,在EB上取一点J,使得MJ=FN,连接PJ.∵BP平分∠BC,PA平分∠CAB,PM⊥BC,PN⊥AC,PK⊥AB,∴PM=PK,PK=PN,∴PM=PN,∵∠C=∠PMC=∠PNC=90°,∴四边形PMCN是矩形,∴四边形PMCN是正方形,∴CM=PM,∴∠MPN=90°,在△PMJ和△PNF中,,∴△PMJ≌△PNF(SAS),∴∠MPJ=∠FPN,PJ=PF,∴∠JPF=∠MPN=90°,∵∠EPF=45°,∴∠EPF=∠EPJ=45°,在△PEF和△PEJ中,,∴△PEF≌△PEJ(SAS),∴EF=EJ,∴EF=EM+FN,∴△CEF的周长=CE+EF+CF=CE+EM+CF+FN=2EM=2PM,∵S△ABC=•BC•AC=(AC+BC+AB)•PM,∴PM=2,∴△ECF的周长为4,故答案为:4.【点睛】本题考查角平分线的性质定理,正方形的判定,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问.5、2或6或2【分析】设BE=t,则BF=2t,使△AEG与△BEF全等,由∠A=∠B=90°可知,分两种情况:情况一:当BE=AG,BF=AE时,列方程解得t,可得AG;情况二:当BE=AE,BF=AG时,列方程解得t,可得AG.【详解】解:设BE=t,则BF=2t,AE=6-t,因为∠A=∠B=90°,使△AEG与△BEF全等,可分两种情况:情况一:当BE=AG,BF=AE时,∵BF=AE,AB=6,∴2t=6-t,解得:t=2,∴AG=BE=t=2;情况二:当BE=AE,BF=AG时,∵BE=AE,AB=6,∴t=6-t,解得:t=3,∴AG=BF=2t=2×3=6,综上所述,AG=2或AG=6.故答案为:2或6.【点睛】本题主要考查了全等三角形的性质,利用分类讨论思想是解答此题的关键.6、答案不唯一,如:AC=DB,AB=DC,∠ABC=∠DCB【分析】根据全等三角形的判定条件求解即可.【详解】解:∵∠A=∠D=90°,BC=CB,∴只需要添加:AC=DB或AB=DC,即可利用HL证明△ABC≌△DCB;添加∠ABC=∠DCB可以利用AAS证明△ABC≌△DCB,故答案为:答案不唯一,如:AC=DB,AB=DC,∠ABC=∠DCB.【点睛】本题主要考查了全等三角形的判定,熟知全等三角形的判定条件是解题的关键.7、2【分析】(1)根据路程=速度×时间求解即可;(2)根据全等三角形在判定证明△ACB≌△ECD可得AB=DE,∠A=∠E,当PQ经过点C时,可证得△ACP≌△ECQ,则有AP=EQ,进而可得出t的方程,解方程即可.【详解】解:(1)由题意知:AP=2t,0<t≤,故答案为:2t;(2)∵AC=EC,∠ACB=∠ECD,BC=DC,∴△ACB≌△ECD(SAS),∴DE=AB=5cm,∠A=∠E,当PQ经过点C时,∵∠A=∠E,AC=EC,∠ACP=∠ECQ,∴△ACP≌△ECQ(ASA),∴AP=EQ,又∵AP=2t,DQ=t,∴2t=5-t,解得:t=,故答案为:.【点睛】本题考查全等三角形的应用,熟练掌握全等三角形的判定与性质是解答的关键.8、AB=AC(答案不唯一)【分析】根据全等三角形的判定定理SAS证得△ADB≌△ADC.【详解】解:加上条件,AB=AC,可以得到△ADB≌△ADC(SAS).在△ADB与△ADC中,,∴△ADB≌△ADC(SAS),故答案为:AB=AC(答案不唯一).【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.9、【分析】作,且,连接交于M,连接,证明,得到,,当F为与的交点时,即可求出最小值;【详解】解:如图1,作,且,连接交于M,连接,是等腰三角形,,,,,,,,在与中,,,∴当F为与的交点时,如图2,的值最小,此时,,故答案为:.【点睛】本题主要考查了全等三角形的判定与性质,准确计算是解题的关键.10、①②④【分析】由证明得出,,①正确;由全等三角形的性质得出,由三角形的外角性质得:,得出,②正确;作于,于,如图所示:则,利用全等三角形对应边上的高相等,得出,由角平分线的判定方法得出平分,④正确;假设平分,则,由全等三角形的判定定理可得,得,而,所以,而,故③错误;即可得出结论.【详解】解:,,即,在和中,,,,,故①正确;,由三角形的外角性质得:,,故②正确;作于,于,如图所示,则,,,平分,故④正确;假设平分,则,在与中,,,,,,而,故③错误;所以其中正确的结论是①②④.故答案为:①②④.【点睛】本题考查了全等三角形的判定与性质、三角形的外角性质、角平分线的判定等知识;证明三角形全等是解题的关键.三、解答题1、(1)见解析;(2)见解析【详解】(1)先利用SAS证明△ABF≌△AEC即可得到EC=BF;(2)根据(1)中的全等推得∠AEC=∠ABF,根据∠BAE=90°,∠AEC+∠ADE=90°,再根据对顶角相等,等量代换后,推得∠BMD=90°.【解答】证明:(1)∵AE⊥AB,AF⊥AC,∴∠BAE=∠CAF=90°,∴∠BAE+∠BAC=∠CAF+∠BAC,∴∠EAC=∠BAF,在△ABF和△AEC中,,∴△ABF≌△AEC(SAS),∴EC=BF;(2)如图,由(1)得:△ABF≌△AEC,∴∠AEC=∠ABF,∵AE⊥AB,∴∠BAE=90°,∴∠AEC+∠ADE=90°,∴∠ADE=∠BDM(对顶角相等),∴∠ABF+∠BDM=90°,在△BDM中,∠BMD=180°﹣∠ABF﹣∠BDM=90°,∴EC⊥BF.【点睛】本题主要考查了全等三角形的性质与判定,对顶角的定义,解题的关键在于能够熟练掌握全等三角形的性质与判定条件.2、见解析【分析】根据平行线的性质得出,运用“角角边”证明△AEB≌△CFD即可.【详解】证明:∵,∴,在△AEB和△CFD中,∴△AEB≌△CFD,∴.【点睛】本题考查了全等三角形的判定与性质,解题关键是熟练运用全等三角形的判定定理进行证明.3、见解析【分析】先证明BC=EF,让利用SSS证明△ABC≌△DEF即可得到∠A=∠D.【详解】证明:∵BF=EC,∴BF+FC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 民宿创业项目商业计划书范例解析
- 企业数字化转型推进方案与案例分析
- 2025年工业互联网平台边缘计算硬件架构边缘计算边缘计算节点优化集成报告
- 2025年私人银行业务客户流失率分析与应对策略研究报告
- 房地产买卖合同风险防范技巧
- 护理病例讨论记录标准模板与规范说明
- 大型钢结构安装安全施工方案
- 停车场建设项目总承包实施管理方案
- 基于DNA折纸术的可满足性问题计算模型:原理、构建与前沿探索
- 中考数学模拟试题全真练习卷
- (完整)马克思主义政治经济学习题及参考答案
- 大规模模型蒸馏技术
- 贝朗DIALOG+透析机水路设计概览课件
- 光电功能材料课程-13-18课件
- 施工现场污水排放方案
- 黔西市中医医院金阳院区环评报告
- 我的家乡-枣阳
- 青春期生理卫生知识讲座男生篇
- 高中期中考试家长会PPT课件 (共51张PPT)
- 全球卫生治理课件
- 实验室生物安全程序文件
评论
0/150
提交评论