




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课时规范练A组基础对点练1.已知A,B两地间的距离为10km,B,C两地间的距离为20km,现测得∠ABC=120°,则A,C两地间的距离为()A.10km B.10eq\r(3)kmC.10eq\r(5)km D.10eq\r(7)km解析:如图所示,由余弦定理可得:AC2=100+400-2×10×20×cos120°=700,∴AC=10eq\r(7)(km).答案:D2.一个大型喷水池的中央有一个强大喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的点A测得水柱顶端的仰角为45°,沿点A向北偏东30°前进100m到达点B,在B点测得水柱顶端的仰角为30°,则水柱的高度是()A.50m B.100mC.120m D.150m解析:设水柱高度是hm,水柱底端为C,则在△ABC中,∠BAC=60°,AC=h,AB=100,BC=eq\r(3)h,根据余弦定理得,(eq\r(3)h)2=h2+1002-2·h·100·cos60°,即h2+50h-5000=0,即(h-50)(h+100)=0,即h=50,故水柱的高度是50m.答案:A3.如图,两座灯塔A和B与海岸观察站C的距离相等,灯塔A在观察站南偏西40°,灯塔B在观察站南偏东60°,则灯塔A在灯塔B的()A.北偏东10° B.北偏西10°C.南偏东80° D.南偏西80°解析:由条件及图可知,∠A=∠CBA=40°,又∠BCD=60°,所以∠CBD=30°,所以∠DBA=10°,因此灯塔A在灯塔B南偏西80°.答案:D4.(2018·银川一中月考)如图,设A,B两点在河的两岸,一测量者在A的同侧,在所在的河岸边选定一点C,测出AC的距离为50m,∠ACB=45°,∠CAB=105°后,就可以计算出A,B两点的距离为()A.50eq\r(2)m B.50eq\r(3)mC.25eq\r(2)m D.eq\f(25\r(2),2)m解析:由正弦定理得eq\f(AB,sin∠ACB)=eq\f(AC,sinB),∴AB=eq\f(AC·sin∠ACB,sinB)=eq\f(50×\f(\r(2),2),\f(1,2))=50eq\r(2),故A,B两点的距离为50eq\r(2)m.答案:A5.某位居民站在离地20m高的阳台上观测到对面小高层房顶的仰角为60°,小高层底部的俯角为45°,那么这栋小高层的高度为()A.20(1+eq\f(\r(3),3))m B.20(1+eq\r(3))mC.10(eq\r(2)+eq\r(6))m D.20(eq\r(2)+eq\r(6))m解析:如图,设AB为阳台的高度,CD为小高层的高度,AE为水平线.由题意知AB=20m,∠DAE=45°,∠CAE=60°,故DE=20m,CE=20eq\r(3)m.所以CD=20(1+eq\r(3))m.故选B.答案:B解析:依题意,设乙的速度为xm/s,则甲的速度为eq\f(11,9)xm/s,因为AB=1040,BC=500,所以eq\f(AC,x)=eq\f(1040+500,\f(11,9)x),解得:AC=1260,在△ABC中由余弦定理可知cos∠BAC=eq\f(AB2+AC2-BC2,2AB·AC)=eq\f(10402+12602-5002,2×1040×1260)=eq\f(84,91)=eq\f(12,13),所以sin∠BAC=eq\r(1-cos2∠BAC)=eq\r(1-\b\lc\(\rc\)(\a\vs4\al\co1(\f(12,13)))2)=eq\f(5,13).答案:eq\f(5,13)7.(2018·德州检测)某货轮在A处看灯塔S在北偏东30°方向,它向正北方向航行24海里到达B处,看灯塔S在北偏东75°方向.则此时货轮到灯塔S的距离为________海里.解析:根据题意知,在△ABS中,AB=24,∠BAS=30°,∠ASB=45°,由正弦定理,得eq\f(BS,sin30°)=eq\f(24,sin45°),∴BS=eq\f(12,\f(\r(2),2))=12eq\r(2),故货轮到灯塔S的距离为12eq\r(2)海里.答案:12eq\r(2)8.如图,已知在海岛A上有一座海拔1千米的山,山顶设有一个观察站P,上午11时,测得一轮船在海岛北偏东30°,俯角为30°的B处,到11时10分又测得该船在海岛北偏西60°,俯角为60°的C处.轮船沿BC行驶一段时间后,到达海岛的正西方向的D处,此时轮船距海岛A有__________千米.解析:由已知可求得AB=eq\r(3),AC=eq\f(\r(3),3),BC=eq\f(\r(30),3),所以sin∠ACB=eq\f(3\r(10),10),cos∠ACB=eq\f(\r(10),10).在△ACD中,∠DAC=90°-60°=30°,∠ACD=180°-∠ACB,sin∠ADC=sin(∠ACD+∠DAC)=sin∠ACD·cos∠DAC+sin∠DACcos∠ACD=eq\f(3\r(30)-\r(10),20),由正弦定理可求得AD=eq\f(AC·sin∠ACD,sin∠ADC)=eq\f(9+\r(3),13).答案:eq\f(9+\r(3),13)9.已知在岛A南偏西38°方向,距岛A3海里的B处有一艘缉私艇.岛A处的一艘走私船正以10海里/时的速度向岛北偏西22°方向行驶,问缉私艇朝何方向以多大速度行驶,恰好用0.5小时能截住该走私船?eq\b\lc\(\rc\)(\a\vs4\al\co1(参考数据:sin38°=\f(5\r(3),14),sin22°=\f(3\r(3),14)))解析:如图,设缉私艇在C处截住走私船,D为岛A正南方向上一点,缉私艇的速度为每小时x海里,则BC=0.5x,AC=5海里,依题意,∠BAC=180°-38°-22°=120°,由余弦定理可得BC2=AB2+AC2-2AB·ACcos120°,所以BC2=49,BC=0.5x=7,解得x=14.又由正弦定理得sin∠ABC=eq\f(AC·sin∠BAC,BC)=eq\f(5×\f(\r(3),2),7)=eq\f(5\r(3),14),所以∠ABC=38°,又∠BAD=38°,所以BC∥AD,故缉私艇以每小时14海里的速度向正北方向行驶,恰好用0.5小时截住该走私船.10.如图,在△ABC中,∠ABC=90°,AB=eq\r(3),BC=1,P为△ABC内一点,∠BPC=90°.(1)若PB=eq\f(1,2),求PA;(2)若∠APB=150°,求tan∠PBA.解析:(1)由已知得∠PBC=60°,所以∠PBA=30°.在△PBA中,由余弦定理得PA2=3+eq\f(1,4)-2×eq\r(3)×eq\f(1,2)cos30°=eq\f(7,4).故PA=eq\f(\r(7),2).(2)设∠PBA=α,由已知得PB=sinα.在△PBA中,由正弦定理得,eq\f(\r(3),sin150°)=eq\f(sinα,sin30°-α),化简得eq\r(3)cosα=4sinα.所以tanα=eq\f(\r(3),4),即tan∠PBA=eq\f(\r(3),4).B组能力提升练1.一艘海轮从A处出发,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B处,在C处有一座灯塔,海轮在A处观察灯塔,其方向是南偏东70°,在B处观察灯塔,其方向是北偏东65°,那么B,C两点间的距离是()A.10eq\r(2)海里 B.10eq\r(3)海里C.20eq\r(3)海里 D.20eq\r(2)海里解析:如图所示,易知,在△ABC中,AB=20海里,∠CAB=30°,∠ACB=45°,根据正弦定理得eq\f(BC,sin30°)=eq\f(AB,sin45°),解得BC=10eq\r(2)(海里).答案:A2.如图,在山脚A测得山顶P的仰角为α=30°,沿倾斜角β=15°的斜坡向上走a米到B,在B处测得山顶P的仰角γ=60°,则山高h=()A.eq\f(\r(2),2)aB.eqB.q\f(a,2)米C.eq\f(\r(3),2)a米 D.a米解析:在△PAB中,∠PAB=α-β=15°,∠BPA=(90°-α)-(90°-γ)=γ-α=30°,所以eq\f(a,sin30°)=eq\f(PB,sin15°),所以PB=eq\f(\r(6)-\r(2),2)a,所以PQ=PC+CQ=PB·sinγ+asinβ=eq\f(\r(6)-\r(2),2)a×sin60°+asin15°=eq\f(\r(2),2)a(米).答案:A3.如图,飞机的航线和山顶在同一个铅垂面内,若飞机的高度为海拔18km,速度为1000km/h,飞行员先看到山顶的俯角为30°,经过1min后又看到山顶的俯角为75°,则山顶的海拔高度为(精确到0.1km,参考数据:eq\r(3)≈1.732)()A.8.4km B.6.6kmC.6.5km D.5.6km解析:因为AB=1000×eq\f(1,60)=eq\f(50,3)km,所以BC=eq\f(AB,sin45°)·sin30°=eq\f(50,3\r(2))(km).所以航线离山顶的高度h=eq\f(50,3\r(2))×sin75°=eq\f(50,3\r(2))×sin(45°+30°)≈11.4km.所以山高为18-11.4=6.6(km).答案:B4.如图所示,为了测量某湖泊两侧A,B间的距离,李宁同学首先选定了与A,B不共线的一点C,然后给出了三种测量方案:(△ABC的角A,B,C所对的边分别记为a,b,c)①测量A,C,b②测量a,b,C③测量A,B,a则一定能确定A,B间距离的所有方案的个数为()A.3 B.2C.1 D.0解析:对于①,利用内角和定理先求出B=π-A-C,再利用正弦定理eq\f(b,sinB)=eq\f(c,sinC)解出c,对于②,直接利用余弦定理cosC=eq\f(a2+b2-c2,2ab)即可解出c,对于③,先利用内角和定理求出C=π-A-B,再利用正弦定理eq\f(a,sinA)=eq\f(c,sinC)解出c.答案:A5.(2018·衡水模拟)如图,为了测量河对岸电视塔CD的高度,小王在点A处测得塔顶D的仰角为30°,塔底C与A的连线同河岸成15°角,小王向前走了1200m到达M处,测得塔底C与M的连线同河岸成60°角,则电视塔CD的高度为__________.解析:在△ACM中,∠MCA=60°-15°=45°,∠AMC=180°-60°=120°,由正弦定理得eq\f(AM,sin∠MCA)=eq\f(AC,sin∠AMC),即eq\f(1200,\f(\r(2),2))=eq\f(AC,\f(\r(3),2)),解得AC=600eq\r(6).在Rt△ACD中,因为tan∠DAC=eq\f(DC,AC)=eq\f(\r(3),3),所以DC=ACtan∠DAC=600eq\r(6)×eq\f(\r(3),3)=600eq\r(2)(m).答案:6006.(2018·遂宁模拟)海轮“和谐号”从A处以每小时21海里的速度出发,海轮“奋斗号”在A处北偏东45°的方向,且与A相距10海里的C处,沿北偏东105°的方向以每小时9海里的速度行驶,则海轮“和谐号”与海轮“奋斗号”相遇所需的最短时间为__________小时.解析:设海轮“和谐号”与海轮“奋斗号”相遇所需的最短时间为x小时,如图,则由已知得△ABC中,AC=10,AB=21x,BC=9x,∠ACB=120°,由余弦定理得:(21x)2=100+(9x)2-2×10×9x×cos120°,整理,得36x2-9x-10=0,解得x=eq\f(2,3)或x=-eq\f(5,12)(舍).所以海轮“和谐号”与海轮“奋斗号”相遇所需的最短时间为eq\f(2,3)小时.答案:eq\f(2,3)7.如图,现要在一块半径为1m,圆心角为eq\f(π,3)的扇形白铁片AOB上剪出一个平行四边形MNPQ,使点P在弧AB上,点Q在OA上,点M,N在OB上,设∠BOP=θ,平行四边形MNPQ的面积为S.(1)求S关于θ的函数关系式.(2)求S的最大值及相应的θ角.解析:(1)分别过P,Q作PD⊥OB于点D,QE⊥OB于点E,则四边形QEDP为矩形.由扇形半径为1m,得PD=sinθ,OD=cosθ.在Rt△OEQ中,OE=eq\f(\r(3),3)QE=eq\f(\r(3),3)PD,MN=QP=DE=OD-OE=cosθ-eq\f(\r(3),3)sinθ,S=MN·PD=eq\b\lc\(\rc\)(\a\vs4\al\co1(cosθ-\f(\r(3),3)sinθ))·sinθ=sinθcosθ-eq\f(\r(3),3)sin2θ,θ∈eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(π,3))).(2)S=eq\f(1,2)sin2θ-eq\f(\r(3),6)(1-cos2θ)=eq\f(1,2)sin2θ+eq\f(\r(3),6)cos2θ-eq\f(\r(3),6)=eq\f(\r(3),3)sineq\b\
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 房屋租赁合同变更协议标准范本
- 企业名称2023-2025年发展报告投资者版辅助康复类器械行业
- 食品加工卫生安全管理规范及要求
- 环卫工人职业安全操作流程标准
- 物流配送中心操作流程及安全管理指南
- 汉字拼音发音训练与测试方案
- 司法辩护陈述范文全集
- 人力资源岗位技能培训教材全集
- 玉石交易合同风险防控与范例解析
- 基于DISLab的高中力学实验革新与教学效能提升研究
- 工程结算审核工作方案(3篇)
- 秋季企业施工安全培训内容课件
- 2025年秋期新教材人音版三年级上册小学音乐教学计划+进度表
- 保健行业员工知识培训课件
- 人民调解员培训课件
- 中国心房颤动管理指南(2025)解读
- 2025年成人高考专升本民法真题及答案
- 2025-2026学年陕旅版(三起)(2024)小学英语四年级上册(全册)教学设计(附目录)
- 高血压防治知识课件下载
- 口腔护士分级管理办法
- 胃手术并发症及处理
评论
0/150
提交评论