难点解析冀教版8年级下册期末测试卷含答案详解(培优A卷)_第1页
难点解析冀教版8年级下册期末测试卷含答案详解(培优A卷)_第2页
难点解析冀教版8年级下册期末测试卷含答案详解(培优A卷)_第3页
难点解析冀教版8年级下册期末测试卷含答案详解(培优A卷)_第4页
难点解析冀教版8年级下册期末测试卷含答案详解(培优A卷)_第5页
已阅读5页,还剩28页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

冀教版8年级下册期末测试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题14分)一、单选题(7小题,每小题2分,共计14分)1、下列调查中,适宜采用普查的是()A.了解我省中学生的视力情况 B.检测一批电灯泡的使用寿命C.了解我校九(1)班学生校服尺寸情况 D.调查《新闻联播》的收视率2、下列各点在函数y=﹣3x+2图象上的是()A.(0,﹣2) B.(1,﹣1) C.(﹣1,﹣1) D.(﹣,1)3、广渠门中学初一年级开展以“重走红军长征路”为主题的实践活动,依托龙潭公园的环湖步行道设计红军长征路线.如图是利用平面直角坐标系画出的环湖步行道路线上主要地点的大致分布图,这个坐标系分别以正东(向右)、正北(向上)方向为x轴、y轴的正方向,如果表示吴起镇的点的坐标为(2,14),表示腊子口的点的坐标为(﹣12,12),那么表示遵义的点的坐标是()A.(9,2) B.(2,1) C.(16,1) D.(8,﹣5)4、下列调查中,最适合采用普查方式的是()A.调查某品牌电视的使用寿命 B.调查毕节市元旦当天进出主城区的车流量C.调查我校七(1)班新冠核酸检查结果 D.调查某批次烟花爆竹的燃放效果5、如图,点A,B,C在同一直线上,且,点D,E分别是AB,BC的中点.分别以AB,DE,BC为边,在AC同侧作三个正方形,得到三个平行四边形(阴影部分)的面积分别记作,,,若,则等于()A. B. C. D.6、如图,四边形ABCD是平行四边形,过点A作AM⊥BC于点M,交BD于点E,过点C作CN⊥AD于点N,交BD于点F,连接CE,当EA=EC,且点M为BC的中点时,AB:AE的值为()A.2 B. C. D.7、如图,在中,,于点D,F在BC上且,连接AF,E为AF的中点,连接DE,则DE的长为()A.1 B.2 C.3 D.4第Ⅱ卷(非选择题86分)二、填空题(8小题,每小题2分,共计16分)1、如图,在中,,D为外一点,使,E为BD的中点若,则__________.2、在平面直角坐标系中,若点P的坐标为(x,y),点Q的坐标为(mx+y,x+my),则称点Q是点P的m级派生点,例如点P(1,2)(3×1+2,1+3×2),即Q(5,7).如图点Q(﹣5,4)是点P(x,y)的﹣级派生点,点A在x轴上,且S△APQ=4,则点A的坐标为_____.3、如图,直线与相交于点,则关于x,y的二元一次方程组的解为______.4、若一次函数的图象如图所示,则关于的一元一次方程的解是______.5、如图,在平面直角坐标系xOy中,菱形ABCD的顶点A,D分别在y轴的正半轴和负半轴上,顶点B在x轴的负半轴上,若OA=3OD,S菱形ABCD=16,则点C的坐标为______.6、如图,在平行四边形中,是对角线,,点是的中点,平分,于点,连接.已知,,则的长为_______.7、已知菱形ABCD两条对角线的长分别为6和8,若另一个菱形EFGH的周长和面积分别是菱形ABCD周长和面积的2倍,则菱形EFGH两条对角线的长分别是

_____.8、过某个多边形一个顶点的所有对角线,将此多边形分成7个三角形,则此多边形的边数______.三、解答题(7小题,每小题10分,共计70分)1、如图,直线,线段分别与直线、交于点、点,满足.(1)使用尺规完成基本作图:作线段的垂直平分线交于点,交于点,交线段于点,连接、、、.(保留作图痕迹,不写做法,不下结论)(2)求证:四边形为菱形.(请补全下面的证明过程)证明:____①____垂直平分,∴____②________③____∴四边形是___④_____∴四边形是菱形(______⑤__________)(填推理的依据).2、已知一次函数y=﹣x+3与x轴,y轴分别交于A、B两点.(1)求A、B两点的坐标.(2)在坐标系中画出一次函数y=﹣x+3的图象,并结合图象直接写出y<0时x的取值范围.(3)若点C为直线AB上动点,△BOC的面积是6,求点C的坐标.3、已知一次函数y1=ax+b,y2=bx+a(ab≠0,且a≠b).(1)若y1过点(1,2)与点(2,b﹣a﹣3)求y1的函数表达式;(2)y1与y2的图象交于点A(m,n),用含a,b的代数式表示n;(3)设y3=y1﹣y2,y4=y2﹣y1,当y3>y4时,求x的取值范围.4、已知一次函数y=-x+2.(1)求这个函数的图像与两条坐标轴的交点坐标;(2)在平面直角坐标系中画出这个函数的图像;(3)结合函数图像回答问题:①当x>0时,y的取值范围是;②当y<0时,x的取值范围是.5、经开区某中学计划举行一次知识竞赛,并对获奖的同学给予奖励.现要购买甲、乙两种奖品,已知1件甲种奖品和2件乙种奖品共需40元,2件甲种奖品和3件乙种奖品共需70元.(1)求甲、乙两种奖品的单价;(2)根据颁奖计划,该中学需甲、乙两种奖品共60件,且甲种奖品不少于乙种奖品的一半,应如何购买才能使总费用最少?并求出最少费用.6、如图,在平面直角坐标系中有,两点,坐标分别为,,已知点的坐标为(1)确定平面直角坐标系,并画出;(2)请画出关于轴对称的图形,并直接写出的面积;(3)若轴上存在一点,使的值最小.请画图确定点的位置,并直接写出的最小值.7、如图,矩形ABCD的对角线AC、BD相交于点O,AB=5cm,∠BOC=120°,求矩形对角线的长.-参考答案-一、单选题1、C【解析】【分析】根据适合采用全面调查的方式的情况“当调查的对象个数较少,调查容易进行时,我们采用全面调查的方式进行,当调查的结果有特别要求时,或调查的结果有特殊意义时,采用全面调查的方式进行”进行解答即可得.【详解】解:A、了解我省中学生的视力情况,调查范围广,适合抽样调查,选项说法错误,不符合题意;B、检测一批电灯泡的使用寿命,适合抽样调查,选项说法错误,不符合题意;C、了解我校九(1)班学生校服尺寸情况,适合用普查,选项说法正确,符合题意;D、调查《新闻联播》的收视率,适合用抽样调查,选项说法错误,不符合题意;故选C.【点睛】本题考查了抽样调查与全面调查,解题的关键是掌握适合采用全面调查的方式的情况.2、B【解析】【分析】根据一次函数图象上点的坐标满足函数解析式,逐一判断,即可得到答案.【详解】∵,∴A不符合题意,∵,∴B符合题意,∵,∴C不符合题意,∵,∴D不符合题意,故选B.【点睛】本题主要考查一次函数图象上点的坐标,掌握一次函数图象上点的坐标满足函数解析式,是解题的关键.3、C【解析】【分析】直接利用吴起镇和腊子口的位置进而确定原点的位置,进而确定遵义的点的坐标.【详解】解:如图所示,建立平面直角坐标系,由题意可知:在x轴上每个小格表示2个单位,在y轴上每个小格表示1个单位,遵义的点的坐标是(16,1)故选:C.【点睛】此题主要考查了坐标确定位置,正确利用已知点坐标得出原点位置是解题关键.4、C【解析】【分析】根据抽样调查与普查的适用范围进行判断即可.【详解】解:A、D中为出售的产品,适合抽样调查;不符合要求;B中元旦的车流量较大,适合抽样调查;不符合要求;C中新冠核酸检查关乎每个人的身心健康,适合普查,符合要求;故选C.【点睛】本题考查了抽样调查与普查.解题的关键在于区分二者的适用范围.5、B【解析】【分析】设BE=x,根据正方形的性质、平行四边形的面积公式分别表示出S1,S2,S3,根据题意计算即可.【详解】∵,∴AB=2BC,又∵点D,E分别是AB,BC的中点,∴设BE=x,则EC=x,AD=BD=2x,∵四边形ABGF是正方形,∴∠ABF=45°,∴△BDH是等腰直角三角形,∴BD=DH=2x,∴S1=DH•AD=,即2x•2x=,∴x2=,∵BD=2x,BE=x,∴S2=MH•BD=(3x−2x)•2x=2x2,S3=EN•BE=x•x=x2,∴S2+S3=2x2+x2=3x2=,故选:B.【点睛】本题考查的是正方形的性质、平行四边形的性质,掌握正方形的四条边相等、四个角都是90°是解题的关键.6、B【解析】【分析】根据平行四边形的性质、垂直的定义、平行线的判定定理可以推知AE∥CF;然后由全等三角形的判定定理ASA推知△ADE≌△CBF;最后根据全等三角形的对应边相等知AE=CF,所以对边平行且相等的四边形是平行四边形;连接AC交BF于点O,根据EA=EC推知▱ABCD是菱形,根据菱形的邻边相等知AB=BC;然后结合已知条件“M是BC的中点,AM⊥BC”证得△ADE≌△CBF(ASA),所以AE=CF,从而证得△ABC是正三角形;最后在Rt△BCF中,求得CF:BC=,利用等量代换知(AE=CF,AB=BC)AB:AE=.【详解】解:连接AC,∵四边形ABCD是平行四边形,∴BC∥AD;∴∠ADE=∠CBD,∵AD=BC,在△ADE和△CBF中,,∴△ADE≌△CBF(ASA),∴AE=CF,又∵AM⊥BC,∴AM⊥AD;∵CN⊥AD,∴AM∥CN,∴AE∥CF;∴四边形AECF为平行四边形,∵EA=EC,∴▱AECF是菱形,∴AC⊥BD,∴平行四边形ABCD是菱形,∴AB=BC,∵M是BC的中点,AM⊥BC,∴AB=AC,∴△ABC为等边三角形,∴∠ABC=60°,∠CBD=30°;在Rt△BCF中,CF:BC=,又∵AE=CF,AB=BC,∴AB:AE=.故选:B.【点睛】本题综合考查了全等三角形的判定与性质、菱形的判定与性质以及等边三角形的判定与性质等知识点,证得▱ABCD是菱形是解题的难点.7、B【解析】【分析】先求出,再根据等腰三角形的三线合一可得点是的中点,然后根据三角形中位线定理即可得.【详解】解:,,,(等腰三角形的三线合一),即点是的中点,为的中点,是的中位线,,故选:B.【点睛】本题考查了等腰三角形的三线合一、三角形中位线定理,熟练掌握等腰三角形的三线合一是解题关键.二、填空题1、##30度【解析】【分析】延长BC、AD交于F,通过全等证明C是BF的中点,然后利用中位线的性质即可.【详解】解:延长BC、AD交于F,在△ABC和△AFC中,∴△ABC≌△AFC(ASA),∴BC=FC,∴C为BF的中点,∵E为BD的中点,∴CE为△BDF的中位线,∴CE//AF,∴∠ACE=∠CAF,∵∠ACB=90°,∠ABC=60°,∴∠BAC=30°,∴∠ACE=∠CAF=∠BAC=30°,故答案为:30°.【点睛】本题考查了全等三角形的判定与性质、三角形中位线的定义与性质,以及平行线的性质,作出正确的辅助线是解题的关键.2、(6,0)或(2,0)【解析】【分析】根据派生点的定义,可列出关于x,y的二元一次方程,求出x、y,即得出P点的坐标.设点A坐标为(t,0),根据,即可列出,解出t的值,即得到A点坐标.【详解】根据点Q(-5,4)是点P(x,y)的级派生点,∴,解得:,∴P点坐标为(4,0).设点A坐标为(t,0),∵,∴,解得:或∴A点坐标为(6,0)或(2,0).故答案为(6,0)或(2,0).【点睛】本题考查坐标与图形的性质,二元一次方程组的应用以及绝对值方程的应用.理解派生点的定义,根据派生点求出P点坐标是解答本题的关键.3、【解析】【分析】根据两条直线相交与二元一次方程组的关系即可求得二元一次方程组的解.【详解】∵直线与相交于点∴的坐标既满足,也满足∴是方程组的解故答案为:【点睛】本题考查了两条直线相交与二元一次方程组的关系,理解这个关系是关键.4、【解析】【分析】一次函数与关于的一元一次方程的解是一次函数,当时,的值,由图像即可的出本题答案.【详解】解:∵由一次函数的图像可知,当时,,∴关于的一元一次方程的解就是.故答案是:x=2.【点睛】本题主要考查了一次函数与关于的一元一次方程的解关系的知识,掌握一次函数,当时,的值就是关于的一元一次方程的解,是解答本题的关键.5、(-2,-8)【解析】【分析】由菱形的性质可得出,即,,再根据勾股定理可求出OB的长度.设,则,列等式,求出,则答案可解.【详解】,四边形ABCD为菱形,,,即,,,.设则,,即,,解得(舍去).在轴上,,即轴,则轴,.【点睛】本题考查了菱形的性质及勾股定理,根据菱形的性质结合勾股定理求出、、的长是解题的关键.6、##3.5##【解析】【分析】延长AB、CF交于点H,由“ASA”可证△AFH≌△AFC,可得AC=AH=12,HF=CF,由三角形中位线定理可求解.【详解】解:如图,延长、交于点,四边形是平行四边形,,,,平分,,在和中,,,,,,点是的中点,,∴EF是△CBH的中位线,,故答案为:.【点睛】本题考查了平行四边形的性质,全等三角形的判定和性质,勾股定理,三角形中位线等知识,添加恰当辅助线构造全等三角形是本题的关键.7、,【解析】【分析】首先根据题意画出图形,然后由菱形的两条对角线长分别是6和8,可求得OA=4,OB=3,再由勾股定理求得边长,继而求得此菱形的周长与面积,然后根据勾股定理即可得到结论.【详解】解:如图,菱形ABCD中,AC=8,BD=6,∴OA=AC=4,OB=BD=3,AC⊥BD,∴AB==5,∴菱形ABCD的周长是:5×4=20,面积是:×6×8=24.∵另一个菱形EFGH的周长和面积分别是菱形ABCD周长和面积的2倍,∴菱形EFGH的周长和面积分别是40,48,∴菱形EFGH的边长是10,设菱形EFGH的对角线为2a,2b,∴a2+b2=100,×2a×2b=48,∴a=,b=,∴菱形EFGH两条对角线的长分别是,,故答案为:2,.【点睛】本题考查了菱形的性质以及勾股定理.关键是熟练掌握菱形的面积等于对角线积的一半的知识点.8、9【解析】【分析】根据n边形从一个顶点出发可引出(n-3)条对角线,可组成n-2个三角形,依此可得n的值.【详解】解:由题意得,n-2=7,解得:n=9,即这个多边形是九边形.故答案为:9.【点睛】本题考查了多边形的对角线,求对角线条数时,直接代入边数n的值计算,而计算边数时,需利用方程思想,解方程求n.三、解答题1、(1)见解析(2)①;②;③;④平行四边形;⑤对角线互相垂直的平行四边形是菱形【解析】【分析】(1)分别以A、D为圆心,大于AD的一半长为半径,画弧,两弧交于两点,然后过这两点作直线交l1于E,交l2于F,直线EF为线段AD的垂直平分线,连接、、、即可;(2):根据,内错角相等得出∠2①,根据垂直平分,得出,,可证②△EOC,根据全等三角形性质得出OF③,再证,根据对角线互相平分的四边形是平行四边形判定四边形是平行四边形④,根据对角线互相垂直即可得出四边形是菱形(对角线互相垂直的平行四边形是菱形⑤).(1)解:分别以A、D为圆心,大于AD的一半长为半径,画弧,两弧交于两点,然后过这两点作直线交l1于E,交l2于F,直线EF为线段AD的垂直平分线,连接、、、即可;如图所示(2)证明:,∠2①,垂直平分,,,∴②△EOC,OF③,,,,∴四边形是平行四边形④,,∴四边形是菱形(对角线互相垂直的平行四边形是菱形⑤),故答案为:①;②;③;④平行四边形;⑤对角线互相垂直的平行四边形是菱形.【点睛】本题考查尺规作图,垂直平分线性质,三角形全等判定与性质,菱形的判定,掌握尺规作图,垂直平分线性质,三角形全等判定与性质,菱形的判定是解题关键.2、(1)A(3,0);B(0,3)(2)见解析,x>3(3)(4,-1)或(-4,7)【解析】【分析】(1)分别代入x=0,y=0计算即可判断;(2)利用图象,可得出x的范围;(3)由面积为6,可求出C到y轴的距离,从而得出坐标.(1)当x=0时,y=3;当y=0时,x=3,∴A(3,0),B(0,3).(2)画出函数图象如图:由图象知,当y<0时,x>3.(3)∵△BOC的面积是6,∴×3×|

x|=6,∴|x|=4,当x=4时,y=-1;当x=-4时,y=7.∴C(4,-1)或(-4,7).【点睛】本题考查了一次函数的图象和性质、一次函数与不等式的关系、三角形的面积等知识,熟练掌握一次函数的图象是解题的关键3、(1)y1=﹣x+3(2)n=a+b(3)当a>b时,x>1;当a<b时,x<1【解析】【分析】(1)把(1,2)、(2,b-a-3)分别代入y1=ax+b得到a、b的方程组,然后解方程组得到y1的函数表达式;(2)把A(m,n)分别代入y1=ax+b和y2=bx+a中得到am+b=nbm+a=n,先利用加减消元法求出m,然后得到n与a、b(3)先用a、b表示y3和y4,利用y3>y4得到(a-b)x+b-a>(b-a)x+a-b,然后解不等式即可.(1)解:把(1,2)、(2,b﹣a﹣3)分别代入y1=ax+b得,解得,∴y1的函数表达式为y1=﹣x+3;(2)解:∵y1与y2的图象交于点A(m,n),∴am+b=nbm+a=n∴m=1,n=a+b;(3)解:y3=y1﹣y2=ax+b﹣(bx+a)=(a﹣b)x+b﹣a,y4=y2﹣y1=bx+a﹣(ax+b)=(b﹣a)x+a﹣b,∵y3>y4,∴(a﹣b)x+b﹣a>(b﹣a)x+a﹣b,整理得(a﹣b)x>a﹣b,当a>b时,x>1;当a<b时,x<1.【点睛】本题考查了待定系数法求一次函数解析式:设一次函数解析式为y=kx+b(k≠0),再把两组对应量代入,然后解关于k,b的二元一次方程组.从而得到一次函数解析式.也考查了一次函数的性质.4、(1)这个函数的图像与坐标轴的交点为(0,2),(2,0);(2)见解析(3)①y<2;②x>2【解析】【分析】(1)令x=0,求函数与y轴的交点,令y=0,求函数与x轴的交点;(2)两点法画出函数图象;(3)通过观察函数图象求解即可.(1)解:令x=0,则y=2,令y=0,则x=2,∴这个函数的图像与坐标轴的交点为(0,2),(2,0);(2)解:这个函数的图像如图所示:,(3)解:①观察图像可知:当x>0时,y<2,故答案为:y<2;②观察图像可知:当y<0时,x>2,故答案为:x>2.【点睛】本题考查了一次函数的图象及性质,熟练掌握一次函数的图象及性质,数形结合解题是关键.5、(1)甲种奖品的单价为20元/件,乙种奖品的单价为10元/件;(2)当学习购买20件甲种奖品、40件乙种奖品时,总费用最少,最少费用是800元.【解析】【分析】(1)设甲种奖品的单价为x元/件,乙种奖品的单价为y元/件,根据“购买1件甲种奖品和2件乙种奖品共需40元,购买2件甲种奖品和3件乙种奖品共需70元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购买甲种奖品m件,则购买乙种奖品(60-m)件,设购买两种奖品的总费用为w,由甲种奖品的数量不少于乙种奖品数量的一半,可得出关于m的一元一次不等式,解之可得出m的取值范围,再由总价=单价×数量,可得出w关于m的函数关系式,利用一次函数的性质即可解决最值问题.(1)设甲种奖品的单价为x元/件,乙种奖品的单价为y元/件,依题意,得:x+2y=402x+3y=70解得x=20y=10答:甲种奖品的单价为20元/件,乙种奖品的单价为10元/件.(2)设购买甲种奖品m件,则购买乙种奖品(60-m)件,设购买两种奖品的总费用为w元,∵甲种奖品的数量不少于乙种奖品数量的一半,∴m≥(60-m),∴m≥20.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论