




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
华东师大版8年级下册期末试题考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、下列各点中,在第二象限的点是()A. B. C. D.2、若整数a使得关于x的分式方程有正整数解,且使关于y的不等式组至少有4个整数解,那么符合条件的所有整数a的和为().A.13 B.9 C.3 D.103、已知菱形两条对角线的长分别为8和10,则这个菱形的面积是()A.20 B.40 C.60 D.804、如图,在▱ABCD中,点E在边BC上,连接AE,EM⊥AE,垂足为E,交CD于点M.AF⊥BC,垂足为F.BH⊥AE,垂足为H,交AF于点N,连接AC、NE.若AE=BN,AN=CE,则下列结论中正确的有()个.①;②是等腰直角三角形;③是等腰直角三角形;④;⑤.A.1 B.3 C.4 D.55、数学课上,老师要同学们判断一个四边形门框是否为矩形.下面是某合作小组4位同学拟定的方案,其中正确的是()A.测量对角线是否互相平分 B.测量一组对角是否都为直角C.测量对角线长是否相等 D.测量3个角是否为直角6、能够判断一个四边形是矩形的条件是()A.对角线相等 B.对角线垂直C.对角线互相平分且相等 D.对角线垂直且相等7、变量x与y之间的关系是,当时,自变量x的值是()A.13 B.5 C.2 D.38、如图,在▱ABCD中,对角线AC、BD相交于点O,过点O作OE⊥AC,交AD于点E,连接CE,若△CDE的周长为8,则▱ABCD的周长为()A.8 B.10 C.16 D.20第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、已知点(−2,y1),(−1,y2),(1,y3)都在直线y=−x+b上,则y1,y2,y3的值的大小关系是______.2、如图,大、小两个正方形的中心均与平面直角坐标系的原点O重合,边分别与坐标轴平行.反比例函数y=(k≠0)的图象,与大正方形的一边交于点A(,4),且经过小正方形的顶点B.求图中阴影部分的面积为_____.3、如图,正方形中,为上一动点(不含、,连接交于,过作交于,过作于,连接,.下列结论:①;②;③平分;④,正确的是__(填序号).4、如果点A(﹣1,3)、B(5,n)在同一个正比例函数的图像上,那么n=___.5、如图,矩形的两条对角线相交于点,已知,,则矩形对角线的长为_______.6、计算:______.7、如图,在平面直角坐标系xOy中,矩形OABC的顶点A在x轴的正半轴上,且顶点B的坐标是(1,2),如果以O为圆心,OB长为半径画弧交x轴的正半轴于点P,那么点P的坐标是_______.三、解答题(7小题,每小题10分,共计70分)1、2021年是中国共产党成立100周年.为了庆祝建党100周年,某工厂需制作一批纪念品,现有甲、乙两种机器同时开工制造.已知甲加工150个纪念品所用的时间与乙加工120个纪念品所用的时间相等,甲、乙两种机器每分钟共加工90个纪念品,求甲、乙两种机器每分钟各加工多少个纪念品?2、解关于x的方程:.3、如图,直线l经过点A(﹣1,﹣2)和B(0,1).(1)求直线l的函数表达式;(2)线段AB的长为_____;(3)在y轴上存在点C,使得以A、B、C为顶点的三角形是以AB为腰的等腰三角形,请直接写出点C的坐标.4、下面是小石设计的“作矩形”的尺规作图过程:已知:在中,.求作:矩形.作法:如图,1.以点为圆心,长为半径作弧;2.以点为圆心,长为半径作弧;3.两弧交于点,、在同侧;4.连接、.所以四边形是矩形.根据小石设计的尺规作图过程:(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:连接,在和中,,...四边形是平行四边形(填理论依据).,四边形是矩形.(填理论依据).5、求作:矩形ABCD,使它的对角线,且对角线夹角为60°.6、解分式方程:.7、学校科技小组进行机器人行走性能试验,在试验场地一条笔直的赛道上有A,B,C三个站点,A,B两站点之间的距离是90米(图1).甲、乙两个机器人分别从A,B两站点同时出发,向终点C行走,乙机器人始终以同一速度匀速行走.图2是两机器人距离C站点的距离y(米)出发时间t(分钟)之间的函数图像,其中为折线段.请结合图象回答下列问题:(1)乙机器人行走的速度是______米/分钟,甲机器人前3分钟行走的速度是______米/分钟;(2)在时,甲的速度变为与乙的速度相同,6分钟后,甲机器人又恢复为原来出发时的速度.①图2中m的值为______,n的值为______.②请写出在时,甲、乙两机器人之间的距离S(米)与出发时间t(分钟)之间的函数关系式.-参考答案-一、单选题1、D【解析】【分析】根据第二象限内的点的横坐标为负,纵坐标为正判断即可.【详解】解:∵第二象限内的点的横坐标为负,纵坐标为正,∴在第二象限,故选:D.【点睛】本题考查了象限内点的坐标的特征,解题关键是熟记第二象限内点的横坐标为负,纵坐标为正.2、B【解析】【分析】解不等式组和分式方程得出关于y的范围及x的值,根据不等式组有解和分式方程的解为正整数解得出a的范围,继而可得整数a的个数.【详解】解:解不等式组由①得:y<11,由②得:y≥2a-5,∵不等式组至少有4个整数解,即y=10,9,8,7;∴2a-5≤7,解得:a≤6.解关于x的分式方程,得:x=,∵分式方程有正整数解,∴a-2是8的约数,且
≠4,≠0,a≠2,解得:a=3或6或10,所以所有满足条件的整数a的值为3,6.那么符合条件的所有整数a的和为9.故选:B.【点睛】本题主要考查了分式方程的解和一元一次不等式组的解,熟练掌握解分式方程和不等式组的能力,并根据题意得到关于a的范围是解题的关键.3、B【解析】【分析】根据菱形的面积公式求解即可.【详解】解:这个菱形的面积=×10×8=40.故选:B.【点睛】本题考查了菱形的面积问题,掌握菱形的面积公式是解题的关键.4、C【解析】【分析】证出∠NBF=∠EAF=∠MEC,再证明△NBF≌△EAF(AAS),得出BF=AF,NF=EF,证明△ANB≌△CEA得出∠CAE=∠ABN,推出∠ABF=∠FAC=45°;再证明△ANE≌△ECM得出CM=NE,由NF=NE=MC,得出AF=MC+EC,即可得出结论.【详解】解:∵BH⊥AE,AF⊥BC,AE⊥EM,∴∠AEB+∠NBF=∠AEB+∠EAF=∠AEB+∠MEC=90°,∴∠NBF=∠EAF=∠MEC,在△NBF和△EAF中,,∴△NBF≌△EAF(AAS);∴BF=AF,NF=EF,∴∠ABC=45°,∠ENF=45°,∴△NFE是等腰直角三角形,故③正确;∵∠ANB=90°+∠EAF,∠CEA=90°+∠MEC,∴∠ANB=∠CEA,在△ANB和△CEA中,,∴△ANB≌△CEA(SAS),故①正确;∵AN=CE,NF=EF,∴BF=AF=FC,又∵AF⊥BC,∠ABC=45°,∴△ABC是等腰直角三角形,故②正确;在▱ABCD中,CD∥AB,且△ABC、△NFE都是等腰直角三角形,∴∠ACD=∠BAC=90°,∠ACB=∠FNE=45°,∴∠ANE=∠BCD=135°,在△ANE和△ECM中,,∴△ANE≌△ECM(ASA),故④正确;∴CM=NE,又∵NF=NE=MC,∴AF=MC+EC,∴AD=BC=2AF=MC+2EC,故⑤错误.综上,①②③④正确,共4个,故选:C.【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质、等腰直角三角形的判定和性质等知识;熟练掌握平行四边形的性质,证明三角形全等是解题的关键.5、D【解析】【分析】矩形的判定方法有:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线互相平分且相等的四边形是矩形;由矩形的判定方法即可求解.【详解】解:A、对角线是否互相平分,能判定是否是平行四边形,故不符合题意;B、测量一组对角是否都为直角,不能判定形状,故不符合题意;C、测量对角线长是否相等,不能判定形状,故不符合题意;D、测量3个角是否为直角,若四边形中三个角都为直角,能判定矩形,故符合题意;故选:D.【点睛】本题考查的是矩形的判定、平行四边形的判定等知识;熟练掌握矩形的判定和平行四边形的判定与性质是解题的关键.6、C【解析】略7、C【解析】【分析】直接把y=5代入y=2x+1,解方程即可.【详解】解:当y=5时,5=2x+1,解得:x=2,故选:C.【点睛】本题考查了函数值,解题的关键是掌握已知函数解析式,给出函数值时,求相应的自变量的值就是解方程.8、C【解析】【分析】根据线段垂直平分线的判定和性质,可得AE=CE,又由CE+DE+CD=8,即AD+CD=8,继而可得ABCD的周长.【详解】解:∵四边形ABCD是平行四边形,∴OA=OC,AB=CD,AD=BC,∵OE⊥AC,∴OE是线段AC的垂直平分线,∴AE=CE,∵△CDE的周长为8,∴CE+DE+CD=8,即AD+CD=8,∴平行四边形ABCD的周长为2(AD+CD)=16.故选:C.【点睛】本题考查了平行四边形的性质、线段垂直平分线的判定和性质,关键是根据线段垂直平分线的性质进行分析.此题难度不大,注意掌握数形结合思想的应用.二、填空题1、【解析】【分析】先根据直线y=-x+b判断出函数图象的增减性,再根据各点横坐标的大小进行判断即可.【详解】解:∵直线y=-x+b,k=-<0,∴y随x的增大而减小,又∵-2<-1<1,∴y1>y2>y3.故答案为:y1>y2>y3.【点睛】本题考查的是一次函数的增减性,即一次函数y=kx+b(k≠0)中,当k>0,y随x的增大而增大;当k<0,y随x的增大而减小.2、40【解析】【分析】根据待定系数法求出即可得到反比例函数的解析式;利用反比例函数系数的几何意义求出小正方形的面积,再求出大正方形在第一象限的顶点坐标,得到大正方形的面积,根据图中阴影部分的面积大正方形的面积小正方形的面积即可求出结果.【详解】解:反比例函数的图象经过点,,反比例函数的解析式为;小正方形的中心与平面直角坐标系的原点重合,边分别与坐标轴平行,设点的坐标为,反比例函数的图象经过点,,,小正方形的面积为,大正方形的中心与平面直角坐标系的原点重合,边分别与坐标轴平行,且,大正方形在第一象限的顶点坐标为,大正方形的面积为,图中阴影部分的面积大正方形的面积小正方形的面积.【点睛】本题主要考查了待定系数法求反比例函数的解析式,反比例函数系数的几何意义,正方形的性质,熟练掌握反比例函数系数的几何意义是解决问题的关键.3、①②④【解析】【分析】连接,延长交于点.可证,进而可得,由此可得出;再由,即可得出;连接交于点,则,证明,即可得出,进而可得;过点作于点,交于点,由于是动点,的长度不确定,而是定值,即可得出不一定平分.【详解】解:如图,连接,延长交于点.∵为正方形的对角线∴,在和中∴∴,∵,,∴∵,∴∴∴故①正确;∵,∴是等腰直角三角形∴故②正确;连接交于点,则∵∴在和中∴∴∴故④正确.过点作于点,交于点,是动点∵的长度不确定,而是定值∴不一定等于不一定平分故③错误;故答案为:①②④.【点睛】本题考查了正方形性质,全等三角形判定和性质,角平分线性质和判定,等腰三角形的性质与判定等,熟练掌握全等三角形判定和性质,合理添加辅助线构造全等三角形是解题关键.4、【解析】【分析】设过的正比例函数为:求解的值及函数解析式,再把代入函数解析式即可.【详解】解:设过的正比例函数为:解得:所以正比例函数为:当时,故答案为:【点睛】本题考查的是利用待定系数法求解正比例函数的解析式,正比例函数的性质,熟练的利用待定系数法列方程是解本题的关键.5、5【解析】【分析】由矩形的性质可证△AOB为等边三角形,可求BO=AB的长,即可求BD的长.【详解】解:∵四边形ABCD是矩形,∴AO=CO=BO=DO,∵∠AOD=120°,∴∠AOB=60°,且AO=BO,∴△ABO为等边三角形,∴AO=BO=AB=2.5,∴BD=5,故答案为:5.【点睛】本题考查矩形的性质,熟练掌握矩形的性质是本题的关键,①矩形的对边平行且相等;②矩形的四个角都是直角;③矩形的对角线相等且互相平分.6、【解析】【分析】根据同底数幂的乘法,可得答案.【详解】解:原式.故答案为:.【点睛】本题考查了负整数指数幂,利用同底数幂的乘法计算是解题关键.7、(,0)【解析】【分析】利用勾股定理求出OB的长度,同圆的半径相等即可求解.【详解】由题意可得:OP=OB,OC=AB=2,BC=OA=1,∵OB===,∴OP=,∴点P的坐标为(,0).故答案为:(,0).【点睛】本题考查勾股定理的应用,在直角三角形中,两条直角边的平方和,等于斜边的平方.三、解答题1、甲机器每分钟加工纪念品50个,乙机器每分钟加工纪念品40个【解析】【分析】设甲机器每分钟加工纪念品x个,根据等量关系:甲加工150个纪念品所用的时间=乙加工120个纪念品所用的时间,列出分式方程并解之即可.【详解】设甲机器每分钟加工纪念品x个,根据题意得解得经检验是原方程的解且符合题意则故甲机器每分钟加工纪念品50个,乙机器每分钟加工纪念品40个【点睛】本题考查了分式方程的实际应用,正确理解题意、找到等量关系并列出方程是解题的关键.注意解分式方程一定要检验.2、x=0【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】解:两边同时乘x-1,得3-(2x+4)=x-1,解得:x=0,检验:把x=0代入得:,∴x=0是原分式方程的解.【点睛】本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.3、(1)y=3x+1(2)(3)C的坐标为(0,﹣5)或(0,﹣+1)或(0,+1).【解析】【分析】(1)根据题意设直线l的函数表达式为y=kx+b,将A(﹣1,﹣2)和B(0,1)代入即可得直线l的函数表达式为y=3x+1;(2)根据题意由A(﹣1,﹣2),B(0,1),可得AB=;(3)由题意设C(0,m),则AC=,BC=|m﹣1|,①若AB=AC,即=,可解得C(0,﹣5);②若AB=BC,得=|m﹣1|,解得C(0,﹣+1)或(0,+1).【详解】解:(1)设直线l的函数表达式为y=kx+b,将A(﹣1,﹣2)和B(0,1)代入得:,解得,∴直线l的函数表达式为y=3x+1;(2)∵A(﹣1,﹣2),B(0,1),∴AB==;故答案为:.(3)设C(0,m),则AC=,BC=|m﹣1|,①若AB=AC,如图:∴=,解得m=1(与B重合,舍去)或m=﹣5,∴C(0,﹣5);②若AB=BC,如图:∴=|m﹣1|,解得m=﹣+1或m=+1,∴C(0,﹣+1)或(0,+1),综上所述,以A、B、C为顶点的三角形是以AB为腰的等腰三角形,则C的坐标为(0,﹣5)或(0,﹣+1)或(0,+1).【点睛】本题考查一次函数及应用,涉及待定系数法、两点间的距离、等腰三角形等知识,解题的关键是根据题意,列出满足条件的方程.4、(1)见解析(2),;一组对边平行且相等的四边形是平行四边形;对角线相等的平行四边形是矩形;【解析】【分析】(1)首先以A圆心以BC长度为半径作弧,再以C为圆心AB长度为半径作弧,与前弧交于一点D,连接BD即可;(2)先连接BD,证明△ABC与△BAD全等,进而证明四边形是平行四边形,进而证明四边形是矩形,根据这个思路填空.(1)解:如图,四边形即为所求作.(2)解:连接,在和中,,∴△ABC≌△BAD(SSS),,,四边形是平行四边形(一组对边平行且相等的四边形是平行四边形),,四边形是矩形.(对角线相等的平行四边形是矩形),故答案为:,;一组对边平行且相等的四边形是平行四边形;对角线相等的平行四边形是矩形.【点睛】本题考查平行四边形的性质与证明,矩形的性质与证明,全等三角形的证明,能搞清平行四边形与矩形之间的联系搞清楚是解决本题的关键.5、见详解.【解析】【分析】作线段AC的垂直平分线交AC于点O,作等边△AOB,延长BO,截取OD=OB,连接BC,CD,AD即可.【详解】解:如图,四边形ABCD即为所求作.【点睛】本题考查作图-复杂作图,等边三角形的判定和性质,矩形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.6、无解【解析】【分析】先把分式方程变形成整式方程,求解后再检验即可.【详解】解:去分母得:1−x+2(x-2)=−1,去括号得:1−x+2x-4=−1,解得:x=2,经检验x=2是增根,所以分式方程无解.【点睛】本题考查了解分式方程,掌握解分式方程的一般步骤是解决本题的关键.注意解分式方程必须检验.7、(1)50,80;(2)①120,7.5;②.【解析】【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中医师承考试题目及答案
- 文化遗产数字化展示与传播在文化遗产数字化展示与传播模式创新中的应用策略研究报告
- 尾矿处理技术革新与2025年生态环境修复工程案例分析报告
- 2025年事业单位工勤技能-安徽-安徽水土保持工二级(技师)历年参考题库含答案解析
- 2025年事业单位工勤技能-安徽-安徽信号工-机车信号设备维修四级(中级工)历年参考题库含答案解析
- 面试官教你如何准备培训类面试题
- 辐射安全与防护培训考试试题(含答案)
- 逻辑学试题及答案
- 煤矿安检员考题及答案
- 2025年职工职业技能竞赛(井下采煤工赛项)参考试题(附答案)
- 人工智能技术在司法领域的应用与法律挑战
- 风光储储能项目PCS舱、电池舱吊装方案
- 消防维保方案(消防维保服务)(技术标)
- 2023智联招聘行测题库
- 隧道洞渣加工石料组织管理方案
- 二年级下册音乐《每天》教案
- 音乐美学.课件
- 心肺复苏说课比赛课件模板(一等奖)
- 健康体检证明
- 北京大学信息管理系《图书馆学概论》精品课件资料
- 2021年江西外语外贸职业学院教师招聘试题及答案解析
评论
0/150
提交评论