考点解析-四川师范大学附属第一实验中学7年级数学下册第六章 概率初步定向攻克试题(解析版)_第1页
考点解析-四川师范大学附属第一实验中学7年级数学下册第六章 概率初步定向攻克试题(解析版)_第2页
考点解析-四川师范大学附属第一实验中学7年级数学下册第六章 概率初步定向攻克试题(解析版)_第3页
考点解析-四川师范大学附属第一实验中学7年级数学下册第六章 概率初步定向攻克试题(解析版)_第4页
考点解析-四川师范大学附属第一实验中学7年级数学下册第六章 概率初步定向攻克试题(解析版)_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川师范大学附属第一实验中学7年级数学下册第六章概率初步定向攻克考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、抛掷一枚质地均匀的立方体骰子一次,骰子的六个面上分别标有数字1,2,3,4,5,6,则朝上一面的数字为3的倍数概率是()A. B. C. D.2、一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为().A. B. C. D.3、下列四幅图的质地大小、背面图案都一样,把它们充分洗匀后翻放在桌面上,则从中任意抽取一张,抽到的图案是中心对称图形的概率是()A. B. C. D.14、在一个不透明的口袋中装有除颜色外其它都相同的5个红球和3个白球,第一次任意从口袋中摸出一个球来不放回,则第二次摸到白球的概率为()A. B. C. D.5、某十字路口的交通信号灯,每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的可能性大小为()A. B. C. D.6、一个袋子中放有4个红球和6个白球,这些球除颜色外均相同,随机从袋子中摸出一球,摸到红球的概率是()A. B. C. D.7、在一个不透明的袋中装有7个只有颜色不同的球,其中3个白球、4个黑球,从袋中任意摸出一个球,是黑球的概率为()A. B. C. D.8、下列事件中是必然事件的是()A.小菊上学一定乘坐公共汽车B.某种彩票中奖率为1%,买10000张该种票一定会中奖C.一年中,大、小月份数刚好一样多D.将豆油滴入水中,豆油会浮在水面上9、下列说法不正确的是()A.不可能事件发生的概率是0B.概率很小的事件不可能发生C.必然事件发生的概率是1D.随机事件发生的概率介于0和1之间10、下列说法正确的是()A.“明天降雨的概率是80%”表示明天有80%的时间都在降雨B.“抛一枚硬币正面朝上的概率为”表示每抛两次就有一次正面朝上C.“彩票中奖的概率是1%”表示买100张彩票肯定会中奖D.“抛一枚均匀的正方体骰子,朝上的点数是2的概率为”表示随着抛掷次数的增加,“拋出朝上的点数是2”这一事件发生的概率稳定在附近第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题2分,共计20分)1、某校初三(2)班想举办班徽设计比赛,全班50名同学,计划每位同学交设计方案一份,拟评选出10份为一等奖,那么该班某位同学获一等奖的概率为______________.2、“千年梦想,百年奋斗,圆梦今朝”这句话中,“梦”出现的频率是___________.3、从分别写有2,4,5,6的四张卡片中任取一张,卡片上的数是偶数的概率为_____.4、判断下列事件的类型:(必然事件,随机事件,不可能事件)(1)掷骰子试验,出现的点数不大于6._____________(2)抽签试验中,抽到的序号大于0._____________(3)抽签试验中,抽到的序号是0.____________(4)掷骰子试验,出现的点数是7._____________(5)任意抛掷一枚硬币,“正面向上”._____________(6)在上午八点拨打查号台114,“线路能接通”.__________(7)度量五边形外角和,结果是720度.________________5、如果从1,2,3,4,5,6,7,8,9,10这10个数中任意选取一个数,那么取到的数恰好是4的倍数的概率是______________.6、转动如图所示的这些可以自由转动的转盘(转盘均被等分),当转盘停止转动后,根据“指针落在白色区域内”的可能性的大小,将转盘的序号按事件发生的可能性从小到大排列为______.7、一个可以自由转动的圆形转盘,转盘分三个扇形区域,分别涂上红、黄、白三种颜色,其中红色、黄色、白色区域的扇形圆心角度数分别为70°,80°,210°,则指针落在红色区域的概率是____________8、从分别写有数字、、、、0、1、2、3、4的九张一样的卡片中,任意抽取一张卡片,则所抽卡片上数字的绝对值小于2的概率是___________.9、掷一枚质地均匀的硬币8次,其中3次正面朝上,5次反面朝上,现再掷一次,正面朝上的概率是_____.10、一般地,对于一个随机事件A,把刻画其发生可能性大小的数值,称之为随机事件A发生的__________,记为________.一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率P(A)=________.三、解答题(6小题,每小题10分,共计60分)1、在每个事件的括号里填上“必然”、“随机”、“不可能”等词语.①如果,那么.()②如果,那么,.()③一只袋里有5个红球,1个白球,从袋里任取一球是红色的.()④掷骰子游戏中,连续掷十次,掷得的点数全是6.()2、八月底,八年级(1)班学生小颖对全班同学这一个多月来去重庆大学图书馆的次数做了调查统计,将结果分为A、B、C、D、E五类,其中A表示“0次”、B类表示“1次”、C类表示“2次”、D类表示“3次”、E类表示“4次及以上”.并制成了如下不完整的条形统计和扇形统计图(如图所示).请你根据统计图表中的信息,解答下列问题:(1)填空:________;(2)补全条形统计图,并求出扇形统计图中D类的扇形所占圆心角的度数;(3)从全班去过该图书馆的同学中随机抽取1人,谈谈对新图书馆的印象和感受.求恰好抽中去过“4次及以上”的同学的概率.3、如图是计算机中“扫雷”游戏的画面.在一个有9×9个方格的正方形雷区中,随机埋藏着10颗地雷,每个方格内最多只能藏1颗地雷.小王在游戏开始时随机地点击一个方格,点击后出现了如图所示的情况.我们把与标号3的方格相邻的方格记为A区域(画线部分),A区域外的部分记为B区域.数字3表示在A区域有3颗地雷.如果小王在游戏开始时点击的第一个方格出现标号1,那么下一步点击哪个区域比较安全?4、小明就本班同学的上学方式进行调查统计.如图是他通过收集数据后绘制的两幅不完整的统计图.请你根据图中提供的信息解答下列问题:(1)该班共有名同学;(2)将条形统计图补充完整;(3)在全班同学中随机选出一名同学来宣读交通安全法规,选出的恰好是骑车上学的同学的概率是;(4)若全校共有2000名学生,估计步行上学的学生有多少名学生?5、某商店实行有奖销售,印有1万张奖券,其中有10张一等奖,50张二等奖,500张三等奖,其余均无奖,任意抽取一张,(1)获得一等奖的概率有多大?(2)获奖的概率有多大?(3)如果使得获三等奖的概率为,那么需要将多少无奖券改为三等奖券6、从一定高度落下的图钉,落地后可能图钉尖着地,也可能图钉尖不着地.估计哪种事件的概率更大,与同学们合作,通过做试验验证你事先的估计是否正确.-参考答案-一、单选题1、B【分析】直接得出数字为3的倍数的个数,再利用概率公式求出答案.【详解】解:∵一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次∴总的结果数为6,朝上一面的数字为3的倍数有3,6,两种结果,∴朝上一面的数字为3的倍数概率为故选:B【点睛】此题考查了概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.2、B【分析】朝上的数字为偶数的有3种可能,再根据概率公式即可计算.【详解】解:依题意得P(朝上一面的数字是偶数).故选B.【点睛】此题主要考查概率的计算,解题的关键是熟知概率公式进行求解.3、C【分析】根据中心对称图形的定义,即把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称和概率公式计算即可;【详解】根据已知图形可得,中心对称图形是,,,共有3个,∴抽到的图案是中心对称图形的概率是.故选C.【点睛】本题主要考查了概率公式应用和中心对称图形的识别,准确分析计算是解题的关键.4、B【分析】画树状图,表示出等可能的结果,再由概率公式求解即可.【详解】依题意画树状图如下:故第二次摸到白球的概率为故选B.【点睛】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.5、C【分析】用绿灯亮的时间除以三种灯亮总时间即可解答.【详解】解:除以三种灯亮总时间是30+25+5=60秒,绿灯亮25秒,所以绿灯的概率是:.故选C.【点睛】本题主要考查了概率的基本计算,掌握概率等于所求情况数与总情况数之比是解答本题的关键.6、C【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【详解】解:∵袋子里装有10个球,4个红球,6个白球,∴摸出红球的概率:.故选:C.【点睛】本题主要考查了概率的求法与运用,一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.7、C【分析】从中任意摸出1个球共有3+4=7种结果,其中摸出的球是黑球的有4种结果,直接根据概率公式求解即可.【详解】解:∵装有7个只有颜色不同的球,其中4个黑球,∴从布袋中随机摸出一个球,摸出的球是黑球的概率=.故选:C.【点睛】本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.8、D【分析】必然事件就是一定发生的事件,根据定义即可解答.【详解】解:A、小菊上学乘坐公共汽车是随机事件,不符合题意;B、买10000张一定会中奖也是随机事件,尽管中奖率是1%,不符合题意;C、一年中大月份有7个,小月份有5个,不相等,是不可能事件,不符合题意;D、常温下油的密度<水的密度,所以油一定浮在水面上,是必然事件,符合题意.故选:D.【点睛】用到的知识点为:必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9、B【分析】根据概率的意义分别判断后即可确定正确的选项.【详解】解:A.不可能事件发生的概率是0,故该选项正确,不符合题意;B.概率很小的事件也可能发生,故该选项不正确,符合题意;C.必然事件发生的概率是1,故该选项正确,不符合题意;D.随机事件发生的概率介于0和1之间,故该选项正确,符不合题意;故选B【点睛】本题考查概率的意义,理解概率的意义反映的只是这一事件发生的可能性的大小:必然发生的事件发生的概率为1,随机事件发生的概率大于0且小于1,不可能事件发生的概率为0.10、D【分析】根据概率的意义去判断即可.【详解】∵“明天降雨的概率是80%”表示明天有降雨的可能性是80%,∴A说法错误;∵抛一枚硬币正面朝上的概率为”表示正面向上的可能性是,∴B说法错误;∵“彩票中奖的概率是1%”表示中奖的可能性是1%,∴C说法错误;∵“抛一枚均匀的正方体骰子,朝上的点数是2的概率为”表示随着抛掷次数的增加,“拋出朝上的点数是2”这一事件发生的概率稳定在附近,∴D说法正确;故选D.【点睛】本题考查了概率的意义,正确理解概率的意义是解题的关键.二、填空题1、【分析】由题意,用一等奖的份数除以全班学生数即为所求的概率.【详解】解:根据题意分析可得:共50分设计方案,拟评选出10份为一等奖,那么该班某同学获一等奖的概率为:.故答案为:.【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.2、【分析】根据概率公式计算即可.【详解】在12个字中“梦”出现了2次,∴“梦”出现的频率是;故答案是:.【点睛】本题主要考查了概率计算,理解概率公式是解题的关键.3、【分析】根据概率的求法,让是偶数的卡片数除以总卡片数即为所求的概率.【详解】解答:解:∵四张卡片上分别标有数字2,4,5,6,其中有2,4,6,共3张是偶数,∴从中随机抽取一张,卡片上的数字是偶数的概率为,故答案为:.【点睛】点评:本题考查随机事件概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.4、必然事件必然事件不可能事件不可能事件随机事件随机事件不可能事件【分析】根据随机事件、必然事件以及不可能事件的定义即可作出判断.【详解】解:(1)骰子最大的点数是6,所以掷骰子试验,出现的点数不大于6是必然事件;(2)抽签试验中,序号都大于0,抽到的序号大于0是必然事件;(3)抽签试验中,序号都大于0,抽到的序号是0是不可能事件;(4)骰子最大的点数是6,所以掷骰子试验,出现的点数是7是不可能事件;(5)硬币有两面,正面和反面,任意抛掷一枚硬币,“正面向上”是随机事件;(6)在上午八点拨打查号台114,“线路能接通”是随机事件;(7)五边形外角和是,所以度量五边形外角和,结果是度是不可能事件.【点睛】此题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5、【分析】根据从1,2,3,4,5,6,7,8,9,10这10个数中任意选取一个数,得出是4的倍数的数据,再根据概率公式即可得出答案.【详解】解:∵从1,2,3,4,5,6,7,8,9,10这10个数中任意选取一个数,是4的倍数的有:4,8共2个,∴取到的数恰好是4的倍数的概率是.故答案为:.【点睛】本题主要考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.6、①③②【分析】指针落在白色区域内的可能性是:白色÷总面积,比较白色部分的面积即可.【详解】解:指针落在白色区域内的可能性分别为:,,∴从小到大的顺序为:①③②.【点睛】此题主要考查了可能性大小的比较:只要总情况数目(面积)相同,谁包含的情况数目(面积)多,谁的可能性就大;反之也成立;若包含的情况(面积)相当,那么它们的可能性就相等.7、【分析】求出红色区域圆心角在整个圆中所占的比例,这个比例即为所求的概率.【详解】解:∵红色扇形区域的圆心角为70°,所以红色区域所占的面积比例为,即指针停在红色区域的概率是,故答案为:.【点睛】本题主要考查几何概率,掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数是解题的关键.8、【分析】让绝对值小于2的数的个数除以数的总数即为所抽卡片上数字的绝对值小于2的概率.【详解】解:∵数的总个数有9个,绝对值小于2的数有−1,0,1共3个,∴任意抽取一张卡片,则所抽卡片上数字的绝对值小于2的概率是=,故答案为:.【点睛】本题考查概率的求法;得到绝对值小于2的数的个数是解决本题的易错点.9、##【分析】直接利用概率的意义分析得出答案.【详解】解:∵掷质地均匀硬币的试验,每次正面向上和向下的概率相同,∴再次掷出这枚硬币,正面朝上的概率是.故答案为:.【点睛】此题主要考查了概率的意义,正确把握概率的意义是解题关键.10、概率P(A)【详解】略三、解答题1、①必然;②不可能;③随机;④随机【分析】根据确定事件和随机事件的定义来区分判断即可,必然事件和不可能事件统称确定性事件;必然事件:在一定条件下,一定会发生的事件称为必然事件;不可能事件:在一定条件下,一定不会发生的事件称为不可能事件;随机事件:在一定条件下,可能发生也可能不发生的事件称为随机事件.【详解】①如果,那么,是必然事件;故答案为:必然②如果,那么,,是不可能事件,,那么;故答案为:不可能③一只袋里有5个红球,1个白球,从袋里任取一球是红色的,是随机事件;故答案为:随机;④掷骰子游戏中,连续掷十次,掷得的点数全是6,是随机事件.故答案为:随机【点睛】本题考查了确定事件和随机事件,根据相关知识判断事件的发生的可能性大小是解题的关键.2、(1)20;(2)图见解析;72°;(3)【分析】(1)先利用B类人数和它所占的百分比计算出调查的总人数,然后计算出D类人数所占的百分比即可得到a的值;(2)先计算出C类人数,再补全条形统计图,然后用D类人数所占百分比乘以360°得到扇形统计图中D类的扇形所占圆心角的度数;(3)利用E类人数除以总人数得到恰好抽中去过“4次及以上”的同学的概率.【详解】解:(1)调查的总人数为12÷24%=50(人),所以a%==20%,即a=20;故答案为20;(2)C类人数为50−8−12−10−4=16(人),条形统计图为:扇形统计图中D类的扇形所占圆心角的度数为360°×20%=72°;(3)恰好抽中去过“4次及以上”的同学的概率=.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.3、两个区域一样,理由见解析.【分析】本题需先根据已知条件得出各个区域的地雷所占的比例,再进行比较,即可求出答案.【详解】解:将与

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论