难点解析-人教版8年级数学上册《全等三角形》专题训练练习题(含答案解析)_第1页
难点解析-人教版8年级数学上册《全等三角形》专题训练练习题(含答案解析)_第2页
难点解析-人教版8年级数学上册《全等三角形》专题训练练习题(含答案解析)_第3页
难点解析-人教版8年级数学上册《全等三角形》专题训练练习题(含答案解析)_第4页
难点解析-人教版8年级数学上册《全等三角形》专题训练练习题(含答案解析)_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教版8年级数学上册《全等三角形》专题训练考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、如图,∠B=∠E=90°,AB=DE,AC=DF,则△ABC≌△DEF的理由是()A.SAS B.ASA C.AAS D.HL2、如图,△ABC中,已知∠B=∠C,点E,F,P分别是AB,AC,BC上的点,且BE=CP,BP=CF,若∠A=112°,则∠EPF的度数是(

)A.34° B.36° C.38° D.40°3、如图,已知,那么添加下列一个条件后,仍无法判定的是(

)A. B.C. D.4、下列关于全等三角形的说法不正确的是A.全等三角形的大小相等 B.两个等边三角形一定是全等三角形C.全等三角形的形状相同 D.全等三角形的对应边相等5、如图,在和中,,连接交于点,连接.下列结论:①;②;③平分;④平分.其中正确的个数为().A.4 B.3 C.2 D.1第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、如图,平分,.填空:因为平分,所以________.从而________.因此________.2、在△ABC中,∠C=90°,AD是△ABC的角平分线,BC=6、AC=8、AB=10,则点D到AB的距离为_______.3、如图,在和中,,,,,以点为顶点作,两边分别交,于点,,连接,则的周长为______.4、如图,中,,三角形的外角和的平分线交于点E,则的度数为________.5、如图,在Rt△ABC中,∠B=90°,以顶点C为圆心、适当长为半径画弧,分别交AC、BC于点E、F,再分别以点E、F为圆心,以大于EF的长为半径画弧,两弧交于点P,作射线CP交AB于点D.若BD=4,AC=16,则△ACD的面积是______.三、解答题(5小题,每小题10分,共计50分)1、如图,AC是∠BAE的平分线,点D是线段AC上的一点,∠C=∠E,AB=AD.求证:BC=DE.2、如图,,,垂足分别为与相交于点,.(1)求证:;(2)在不添加任何辅助线的情况下,请直接写出图中四对全等的三角形..3、在△ABC中,∠ACB=90°,AC=BC,且AD⊥MN于D,BE⊥MN于E.(1)直线MN绕点C旋转到图(1)的位置时,求证:DE=AD+BE;(2)当直线MN绕点C旋转到图(2)的位置时,试问DE、AD、BE具有怎样的等量关系?请直接写出这个等量关系(不写证明过程);(3)当直线MN绕点C旋转到图(3)的位置时,试问DE、AD、BE具有怎样的等量关系?请直接写出这个等量关系(不写证明过程).4、如图,若△OAD≌△OBC,且∠O=65°,∠BEA=135°,求∠C的度数.5、如图,在△ABC中,BC=AB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.(1)求证:Rt△ABE≌Rt△CBF;(2)若∠CAB=30°,求∠ACF的度数.-参考答案-一、单选题1、D【解析】【详解】∵在Rt△ABC与Rt△DEF中,,∴Rt△ABC≌Rt△DEF(HL),故选D.2、A【解析】【分析】由三角形内角和定理可得∠B=∠C=34°,由△EBP≌△PCF可得∠EPB=∠PFC,再由三角形外角的性质便可解答;【详解】解:△BAC中,∠B=∠C,∠A=112°,则∠B=∠C=34°,△EBP和△PCF中:BE=CP,∠EBP=∠PCF,BP=CF,∴△EBP≌△PCF(SAS),∴∠EPB=∠PFC,∵∠BPF=∠EPB+∠EPF=∠C+∠PFC,∴∠EPF=∠C=34°,故选:A.【考点】本题考查了三角形内角和定理,全等三角形的判定和性质,三角形外角的性质;掌握全等三角形的判定定理和性质是解题关键.3、C【解析】【分析】根据三角形全等的判定方法求解即可.【详解】解:A、∵,,,∴,选项不符合题意;B、∵,,,∴,选项不符合题意;C、∵由,,,∴无法判定,选项符合题意;D、∵,,,∴,选项不符合题意.故选:C.【考点】此题考查了三角形全等的判定方法,解题的关键是熟练掌握三角形全等的判定方法.判定三角形全等的方法有:SSS,SAS,AAS,ASA,HL(直角三角形).4、B【解析】【分析】根据全等三角形的定义与性质即可求解.【详解】A、全等三角形的大小相等,说法正确,故A选项错误;B、两个等边三角形,三个角对应相等,但边长不一定相等,所以不一定是全等三角形,故B选项正确;C、全等三角形的形状相同,说法正确,故C选项错误;D、全等三角形的对应边相等,说法正确,故D选项错误.故选B.【考点】本题考查了全等三角形的定义与性质,能够完全重合的两个三角形叫做全等三角形,即形状相同、大小相等两个三角形叫做全等三角形;全等三角形的对应边相等,对应角相等.5、B【解析】【分析】根据题意逐个证明即可,①只要证明,即可证明;②利用三角形的外角性质即可证明;④作于,于,再证明即可证明平分.【详解】解:∵,∴,即,在和中,,∴,∴,①正确;∴,由三角形的外角性质得:∴°,②正确;作于,于,如图所示:则°,在和中,,∴,∴,∴平分,④正确;正确的个数有3个;故选B.【考点】本题是一道几何的综合型题目,难度系数偏上,关键在于利用三角形的全等证明来证明线段相等,角相等.二、填空题1、

【解析】【分析】由AC平分∠DAB,∠1=∠2,可得出∠CAB=∠2,由内错角相等可以得出两直线平行.【详解】解:∵AC平分∠DAB,∴∠1=∠CAB.又∵∠1=∠2,∴∠CAB=∠2,∴ABDC(内错角相等,两直线平行).故答案为:∠CAB,∠CAB,DC.【考点】本题考查了平行线的判定定理以及角平分线的定义,解题的关键是找出∠CAB=∠2.解决该类题型只需牢牢掌握平行线的判定定理即可.2、或【解析】【分析】作DE⊥AB于E,如图,先根据勾股定理计算出BC=8,再利用角平分线的性质得到DE=DC,设DE=DC=x,利用面积法得到10x=6(8-x),然后解方程即可.【详解】解:作DE⊥AB于E,如图,∵AD是△ABC的一条角平分线,DC⊥AC,DE⊥AB,∴DE=DC,设DE=DC=x,S△ABD=DE•AB=AC•BD,即10x=8(6-x),解得x=,即点D到AB边的距离为.故答案为:.【考点】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等,由已知能够注意到D到AB的距离即为DE长是解决的关键.3、4【解析】【分析】延长AC至E,使CE=BM,连接DE.证明△BDM≌△CDE(SAS),得出MD=ED,∠MDB=∠EDC,证明△MDN≌△EDN(SAS),得出MN=EN=CN+CE,进而得出答案.【详解】延长AC至E,使CE=BM,连接DE.∵BD=CD,且∠BDC=140°,∴∠DBC=∠DCB=20°,∵∠A=40°,AB=AC=2,∴∠ABC=∠ACB=70°,∴∠MBD=∠ABC+∠DBC=90°,同理可得∠NCD=90°,∴∠ECD=∠NCD=∠MBD=90°,在△BDM和△CDE中,,∴△BDM≌△CDE(SAS),∴MD=ED,∠MDB=∠EDC,∴∠MDE=∠BDC=140°,∵∠MDN=70°,∴∠EDN=70°=∠MDN,在△MDN和△EDN中,,∴△MDN≌△EDN(SAS),∴MN=EN=CN+CE,∴△AMN的周长=AM+MN+AN=AM+CN+CE+AN=AM+AN+CN+BM=AB+AC=4;故答案为:4.【考点】本题考查了全等三角形的判定与性质、等腰三角形的性质等知识;构造辅助线证明三角形全等是解题的关键.4、【解析】【分析】本题先通过三角形内角和求解∠BAC与∠BCA的和,继而利用邻补角以及角分线定义求解∠EAC与∠ECA的和,最后利用三角形内角和求解此题.【详解】∵,∴,又∵,,∴.∵三角形的外角和的平分线交于点E,∴,,∴,即.故填:.【考点】本题考查三角形内角和公式以及角分线和邻补角的定义,难度较低,按照对应考点定义求解即可.5、32【解析】【分析】过点D作DQ⊥AC,由作法可知CP是角平分线,根据角平分线的性质知DB=DQ=3,再由三角形的面积公式计算即可.【详解】解:如图,过点D作DQ⊥AC于点Q,由作图知CP是∠ACB的平分线,∵∠B=90°,BD=4,∴DB=DQ=4,∵AC=16,∴S△ACD=•AC•DQ=,故答案为32.【考点】本题主要考查作图-基本作图,三角形面积,解题的关键是掌握角平分线的尺规作图及角平分线的性质.三、解答题1、见解析【解析】【分析】根据角平分线的性质证明△BAC≌△DAE,即可得到结果;【详解】证明:∵AC是∠BAE的平分线,∴∠BAC=∠DAE,∵∠C=∠E,AB=AD.∴△BAC≌△DAE(AAS),∴BC=DE.【考点】本题主要考查了三角形的全等判定及性质,准确利用角平分线的进行计算是解题的关键.2、(1)见解析;(2),,,【解析】【分析】(1)根据垂直的定义得出∠BDF=∠CEF=90°,根据AAS可以推出△BDF≌△CEF,根据全等三角形的性质得出即可;(2)根据全等三角形的性质得出∠B=∠C,BD=CE,DF=EF,求出AB=AC,再根据全等三角形的判定定理推出△ADF≌△AEF,△ABF≌△ACF,△ACD≌△ABE.【详解】证明:,在和中(AAS)

⑵,,,理由是:由(1)知:△BFD≌△CFE,所以DF=EF,∠B=∠C,BD=CE,根据HL可以推出△ADF≌△AEF,所以AD=AE,∵BD=CE,∴AB=AC,根据SAS可以推出△ABF≌△ACF,根据HL可以推出△ACD≌△ABE.【考点】本题考查了全等三角形的性质和判定,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,两直角三角形全等还有HL.3、(1)证明见详解(2)DE+BE=AD.理由见详解(3)DE=BE-AD(或AD=BE-DE,BE=AD+DE等).理由见详解.【解析】【分析】(1)根据题意由垂直得∠ADC=∠BEC=90°,由同角的余角相等得:∠DAC=∠BCE,因此根据AAS可以证明△ADC≌△CEB,结合全等三角形的对应边相等证得结论;(2)由题意根据全等三角形的判定定理AAS推知△ACD≌△CBE,然后由全等三角形的对应边相等、图形中线段间的和差关系以及等量代换证得DE+BE=AD;(3)由题意可知DE、AD、BE具有的等量关系为:DE=BE-AD(或AD=BE-DE,BE=AD+DE等).证明的方法与(2)相同.(1)证明:如图1,∵AD⊥MN,BE⊥MN,∴∠ADC=∠BEC=90°,∴∠DAC+∠ACD=90°,∵∠ACB=90°,∴∠ACD+∠BCE=90°,∴∠DAC=∠BCE,在△ADC和△CEB中,∵,∴△ADC≌△CEB;∴DC=BE,AD=EC,∵DE=DC+EC,∴DE=BE+AD.(2)解:DE+BE=AD.理由如下:如图2,∵∠ACB=90°,∴∠ACD+∠BCE=90°.又∵AD⊥MN于点D,∴∠ACD+∠CAD=90°,∴∠CAD=∠BCE.在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴CD=BE,AD=CE,∴DE+BE=DE+CD=EC=AD,即DE+BE=AD.(3)解:DE=BE-AD(或AD=BE-DE,BE=AD+DE等).理由如下:如图3,易证得△ADC≌△CEB,∴AD=CE,DC=BE,∴DE=CD-CE=BE-AD,即DE=BE-AD.【考点】本题属于几何变换综合题,考查等腰直角三角形和全等三角形的性质和判定,熟练掌握全等三角形的四种判定方法是关键:SSS、SAS、AAS、ASA;在证明线段的和与差时,利用全等三角形将线段转化到同一条直线上得出结论.4、35º【解析】【分析】根据全等三角形对应角相等可得∠C=∠D,∠OBC=∠OAD,再根据三角形的内角和等于180°表示出∠OBC,然后利用四边形的内角和等于360°列方程求解即可.【详解】∴∠C=∠D,∠OBC=∠OAD,∵∠O=65º,∴∠OBC=180º−65º−∠C=115º−∠C,在四边形AOBE中,∠O+∠OBC+∠BEA+∠OAD=360º,∴65º+115º−∠C+135º+115º−∠C=360º,解得∠C=35º.【考点】此题考查了全等三角形的性质和四边形的内角和等于360°,熟练掌握这两个性质是解题的关键.5、(1)证明见解析(2)【解析】【分析】(1)由“HL”可证Rt△ABE≌Rt△CBF;(2)由AB=CB,∠ABC=90°,即可求得∠CAB与∠ACB的度数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论