版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
华东师大版7年级下册期末测试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、第24届冬季奥林匹克运动会将于2022年2月在北京和张家界举行,下列四个图案分别是四届冬奥会图标中的一部分,其中是轴对称图形的为()A. B. C. D.2、整理一批图书,由一个人做要30小时完成,现在计划由一部分人先做2小时,再增加3人和他们一起做4小时,完成这项工作,假设每个人的工作效率相同,具体先安排x人工作,则可列方程为()A. B.C. D.3、如图,将一张长方形纸片ABCD沿对角线BD折叠后,点C落在点E处,连接BE交AD于F,再将三角形DEF沿DF折叠后,点E落在点G处,若DG刚好平分∠ADB,则∠EDF的度数是()A.18° B.30° C.36° D.20°4、如图,表中给出的是某月的月历,任意选取“U”型框中的7个数(如阴影部分所示),请你运用所学的数学知识来研究,发现这7个数的和不可能的是()A.78 B.70 C.84 D.1055、下列说法中,一定正确的是()A.若,则 B.若,则C.若,则 D.若,则6、下列不等式中,属于一元一次不等式的是()A.4>1 B.3x-24<4C.<2 D.4x-3<2y-77、下列说法正确的是()A.x=3是2x+1>5的解 B.x=3是2x+1>5的唯一解C.x=3不是2x+1>5的解 D.x=3是2x+1>5的解集8、下列车标是中心对称图形的是()A. B. C. D.第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、2x-y=3用含x的式子表示y,得____________;用含y的式子表示x,得____________.2、如图,已知的三个角,,,,将绕点顺时针旋转得到,如果,那么_______.3、在△ABC中,D、E分别是BC、AD的中点,S△ABC=4cm2,则S△ABE=_____.4、使二元一次方程两边____的两个未知数的值,叫二元一次方程的一组解.5、已知是方程2x+ay=7的一个解,那么a=_____.6、像这样,关于同一未知数的两个一元一次不等式合在一起,就组成一个__________.7、如图,在面积为48的等腰中,,,P是BC边上的动点,点P关于直线AB、AC的对称点外别为M、N,则线段MN的最大值为______.三、解答题(7小题,每小题10分,共计70分)1、材料阅读:传说夏禹治水时,在黄河支流洛水中浮现出一只大乌龟,背上有一个很奇怪的图案,这个图案被后人称为“洛书”,即现在的三阶幻方.三阶幻方又叫九宫格,它是由九个数字组成的一个三行三列的矩阵.三阶幻方有“和幻方”和“积幻方”.图1所示的是“和幻方”,其每行、每列、每条对角线上的三个数字之和均相等.(1)_______,________;(2)计算:的值;(3)图2所示是“积幻方”,其每行、每列、每条对角线上的三个数字之积均相等,则_______.2、已知数轴上三点,,对应的数分别为,0,3,点为数轴上任意一点,其对应的数为.(1)点到点的距离为;(2)如果点到点、点的距离相等,那么的值是;(3)数轴上是否存在点,使点到点的距离是点到点的距离的3倍?若存在,请你求出的值;若不存在,请说明理由.3、解下列不等式(组):(1);(2)4、已知:在一条东西向的双轨铁路上迎面驶来一快一慢两列火车,快车长(单位长度),慢车长(单位长度),设正在行驶途中的某一时刻,如图,以两车之间的某点O为原点,取向右方向为正方向画数轴,此时快车头A在数轴上表示的数是a,慢车头C在数轴上表示的数是b.若快车AB以6个单位长度/秒的速度向右匀速继续行驶,同时慢车CD以2个单位长度/秒的速度向左匀速继续行驶,且与互为相反数.(1)求此时刻快车头A与慢车头C之间相距多少单位长度?(2)从此时刻开始算起,问再行驶多少秒钟两列火车行驶到车头A和C相距8个单位长度.(3)此时在快车AB上有一位爱动脑筋的六年级学生乘客P,他发现行驶中有一段时间t秒钟,他的位置P到两列火车头A,C的距离和加上到两列火车尾B,D的距离和是一个不变的值(即为定值).你认为学生P发现的这一结论是否正确?若正确,求出这个时间及定值:若不正确,请说明理由.5、我们知道,有理数包括整数、有限小数和无限循环小数.事实上,所有的有理数都可以化为分数形式(整数可看作分母为1的分数),那么无限循环小数如何表示为分数形式呢?例:将化为分数形式:由于,设,即①则②再由②-①得:,解得,于是得:同理可得:,.根据阅读材料回答下列问题:(1)______;(2)昆三中地址为惠通路678号,寓意着三中学子都能被理想学校录取,请将化为分数形式,并写出推导过程(注:)6、解方程:.7、如图1,点、、共线且,,射线,分别平分和.如图2,将射线以每秒的速度绕点顺时针旋转一周,同时将以每秒的速度绕点顺时针旋转,当射线与射线重合时,停止运动.设射线的运动时间为.(1)运动开始前,如图1,________,________(2)旋转过程中,当为何值时,射线平分?(3)旋转过程中,是否存在某一时刻使得?若存在,请求出的值;若不存在,请说明理由.-参考答案-一、单选题1、D【解析】【分析】根据轴对称图形定义进行分析即可.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A、不是轴对称图形,故本选项不符合题意;B、不是轴对称图形,故本选项不符合题意;C、不是轴对称图形,故本选项不符合题意;D、是轴对称图形,故本选项符合题意.故选:D.【点睛】本题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2、D【解析】【分析】设先安排x人工作,则x人工作2小时完成的工作量为:再增加3人和他们一起做4小时,完成的工作量为:利用两部分工作量之和等于1,从而可得答案.【详解】解:设先安排x人工作,则故选D【点睛】本题考查的是一元一次方程的应用,掌握“工程问题中,各部分的工作量之和等于1”列方程是解本题的关键.3、C【解析】【分析】根据折叠的性质可得∠BDC=∠BDE,∠EDF=∠GDF,由角平分线的定义可得∠BDA=∠GDF+∠BDG=2∠GDF,然后根据矩形的性质及角的运算可得答案.【详解】解:由折叠可知,∠BDC=∠BDE,∠EDF=∠GDF,∵DG平分∠ADB,∴∠BDG=∠GDF,∴∠EDF=∠BDG,∴∠BDE=∠EDF+∠GDF+∠BDG=3∠GDF,∴∠BDC=∠BDE=3∠GDF,∠BDA=∠GDF+∠BDG=2∠GDF,∵∠BDC+∠BDA=90°=3∠GDF+2∠GDF=5∠GDF,∴∠GDF=18°,∴∠ADB=2∠GDF=2×18°=36°.故选:C.【点睛】此题考查的是角的运算及角平分线的定义,正确掌握折叠的性质是解决此题的关键.4、A【解析】【分析】设“U”型框中的最下排正中间的数为x,则其它6个数分别为x-15,x-8,x-1,x+1,x-6,x-13,表示出这7个数之和,然后分别列出方程解答即可.【详解】解:设“U”型框中的最下排正中间的数为x,则其他6个数分别为x-15,x-8,x-1,x+1,x-6,x-13,这7个数之和为:x-15+x-8+x-1+x+1+x-6+x-13=7x-42.由题意得:A、7x-42=78,解得x=,不能求出这7个数,符合题意;B、7x-42=70,解得x=16,能求出这7个数,不符合题意;C、7x-42=84,解得x=18,能求出这7个数,不符合题意;D、7x-42=105,解得x=21,能求出这7个数,不符合题意.故选:A.【点睛】本题考查一元一次方程的实际运用,掌握“U”型框中的7个数的数字的排列规律是解决问题的关键.5、A【解析】【分析】根据等式两边同时乘以可对进行判断;利用等式两边同时除以c可对进行判断;利用平方根的定义对进行判断;根据等式的性质对进行判断.【详解】解:.若,则,所以选项符合题意;.若,当时,,所以选项不符合题意;.若,则或,所以选项不符合题意;.若,则,所以选项不符合题意.故选:.【点睛】本题考查了等式的性质:等式两边同时加上或减去同一个整式,等式仍然成立;等式两边同时乘或除以同一个不为0的整式,等式仍然成立.6、B【解析】略7、A【解析】略8、B【解析】【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,根据中心对称图形的概念求解.【详解】解:选项A、C、D均不能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形,选项B能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形,故选:B.【点睛】本题主要考查了中心对称图形,中心对称图形是要寻找对称中心,旋转180度后与原图重合.二、填空题1、y=2x-3【解析】略2、##79度【解析】【分析】根据求出,即可求出旋转角的度数.【详解】解:绕点顺时针旋转得到,则,,故答案为:.【点睛】本题考查了旋转的性质,解题关键是明确旋转角度为的度数.3、1cm2【解析】【分析】根据三角形的中线把三角形分成两个面积相等的三角形的性质分析,即可得到答案.【详解】∵D是BC的中点,S△ABC=4cm2∴S△ABD=S△ABC=×4=2cm2∵E是AD的中点,∴S△ABE=S△ABD=×2=1cm2故答案为:1cm2.【点睛】本题考查了三角形中线的知识;解题的关键是熟练掌握三角形中线的性质,从而完成求解.4、相等【解析】略5、-1【解析】【分析】根据方程的解的概念将方程的解代入原方程,然后计算求解.【详解】解:由题意可得:2×3﹣a=7,解得:a=﹣1,故答案为:﹣1.【点睛】本题考查二元一次方程的解和解一元一次方程,理解方程的解的概念是解题关键.6、一元一次不等式组【解析】略7、19.2【解析】【分析】点P关于直线AB、AC的对称点分别为M、N,根据三角形三边关系可得,当点P与点B或点C重合时,P、M、N三点共线,MN最长,由轴对称可得,,再由三角形等面积法即可确定MN长度.【详解】解:如图所示:点P关于直线AB、AC的对称点分别为M、N,由图可得:,当点P与点B或点C重合时,如图所示,MN交AC于点F,此时P、M、N三点共线,MN最长,∴,,∵等腰面积为48,,∴,,∴,故答案为:.【点睛】题目主要考查对称点的性质及三角形三边关系,三角形等面积法等,理解题意,根据图形得出三点共线时线段最长是解题关键.三、解答题1、(1)12,-6;(2)-2(3)【解析】【分析】(1)根据“和幻方”每行、每列、每条对角线上的三个数字之和均相等列方程即可求字母的值;(2)根据“和幻方”每行、每列、每条对角线上的三个数字之和均相等求出的值,整体代入求值即可;(3)根据“积幻方”每行、每列、每条对角线上的三个数字之积均相等列方程即可求字母的值,代入计算即可.(1)解:根据“和幻方”每行、每列、每条对角线上的三个数字之和均相等列方程得,,解得,,,解得,,故答案为:12,-6;.(2)根据“和幻方”每行、每列、每条对角线上的三个数字之和均相等得,,即,.(3)根据“积幻方”每行、每列、每条对角线上的三个数字之积均相等得,,解得,;,解得,;,故答案为:.【点睛】本题考查一元一次方程的应用,解题关键是准确把握题意,正确列出方程,求出未知数的值.2、(1)4(2)1(3)存在,2或5【解析】【分析】(1)用较大的数3减去较小的数,即得到点与点之间的距离;(2)点表示的数为,且点到点、点的距离相等,则点一定在点与点之间,且点到点的距离可表示为,点到点的距离可表示为,列方程求出的值即可;(3)按点在点左侧、点在点与点之间、点在点右侧分类讨论,列方程求出的值即可.(1)解:因为点表示的数为,点表示的数为3,所以,所以点到点的距离为4,故答案为:4.(2)解:因为点表示的数为,且点到点、点的距离相等,所以,解得,所以的值为1,故答案为:1.(3)解:存在,当点在点左侧时,则,不符合题意;当点在点与点之间时,则,解得;当点在点的右侧时,则,解得,综上所述,的值为2或5.【点睛】此题考查解一元一次方程、列一元一次方程解应用题、数轴上两点之间的距离,数轴上的动点问题的求解等知识与方法,解第(3)题时应分类讨论,以免丢解.3、(1);(2)【解析】【分析】(1)根据不等式的性质求解;(2)分别求出不等式的解集,即可得到不等式组的解集.(1)解:去括号,得移项,得合并同类项,得系数化为1,得;(2)解:解不等式①,得,解不等式②,得x>5,故不等式组的解集为.【点睛】此题考查了解一元一次不等式及不等式组,正确掌握解不等式的步骤及不等式的性质求出解集是解题的关键.4、(1)14单位长度;(2)0.75秒或2.75秒;(3)正确,这个时间是0.5秒,定值是6单位长度.【解析】【分析】(1)根据非负数的性质求出a=﹣6,b=8,求差即可求解;(2)根据时间=路程和÷速度和,设行驶t秒钟两列火车行驶到车头A和C相距8个单位长度,列方程即可求解;(3)由于PA+PB=AB=2,只需要PC+PD是定值,从快车AB上乘客P与慢车CD相遇到完全离开之间都满足PC+PD是定值,依此分析即可求解.(1)解:(1)∵|a+6|与(b﹣8)2互为相反数,∴|a+6|+(b﹣8)2=0,∴a+6=0,b﹣8=0,解得a=﹣6,b=8.∴此时刻快车头A与慢车头C之间相距8﹣(﹣6)=14(单位长度);答:此时快车头A与慢车头C之间相距14单位长度;(2)解:设行驶t秒钟两列火车行驶到车头A和C相距8个单位长度,两车相遇前可列方程为,解得,.两车相遇后可列方程为,解得,.答:再行驶0.75秒或2.75秒两列火车行驶到车头AC相距8个单位长度;(3)正确,∵PA+PB=AB=2,当P在CD之间时,PC+PD是定值4,即路程为4,所以,行驶时间t=4÷(6+2)=4÷8=0.5(秒),此时PA+PC+PB+PD=(PA+PB)+(PC+PD)=2+4=6(单位长度).故这个时间是0.5秒,定值是6单位长度.【点睛】本题考查了一元一次方程的应用,数轴、绝对值和偶次方的非负性,熟练掌握行程问题的等量关系:时间=路程÷速度,根据数形结合的思想理解和解决问题.5、(1)(2),过程见解析【解析】【分析】(1)设,即①,则②,再把两个方程相减即可得到答案;(2)设,即①,则②,再把两个方程相减即可得到答案.(1)解:由于,设,即①则②再由②-①得:,解得,于是得:(2)解:由于,设,即①则②再由②-①得:,解得,于是得:.【点睛】本题考查的是把循环小数化为分数,一元一次方程的应用,理解题意,构建一元
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论