难点解析-湖南省津市市中考数学真题分类(平行线的证明)汇编定向测试试卷(附答案详解)_第1页
难点解析-湖南省津市市中考数学真题分类(平行线的证明)汇编定向测试试卷(附答案详解)_第2页
难点解析-湖南省津市市中考数学真题分类(平行线的证明)汇编定向测试试卷(附答案详解)_第3页
难点解析-湖南省津市市中考数学真题分类(平行线的证明)汇编定向测试试卷(附答案详解)_第4页
难点解析-湖南省津市市中考数学真题分类(平行线的证明)汇编定向测试试卷(附答案详解)_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省津市市中考数学真题分类(平行线的证明)汇编定向测试考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、如图,直线a、b被直线c所截.若∠1=55°,则∠2的度数是(

)时能判定a∥b.A.35° B.45° C.125° D.145°2、对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=2 B.a=-3,b=2 C.a=3,b=-1 D.a=-1,b=33、如图,∠C=88°=∠D,AD与BE相交于点E,若∠DBC=23°,则∠CAE的度数是()A.23° B.25° C.27° D.无法确定4、下列定理中,没有逆定理的是(

)A.等腰三角形的两个底角相等 B.对顶角相等C.三边对应相等的两个三角形全等 D.直角三角形两个锐角的和等于90°5、如图,,将一副直角三角板作如下摆放,,.下列结论:①;②;③;④.其中正确的个数是(

)A.1 B.2 C.3 D.46、将一副三角板的直角顶点重合按如图放置,小明得到下列结论:①如果∠2=30°,则AC∥DE;②∠BAE+∠CAD=180°;③如果BC∥AD,则∠2=30°;④如果∠CAD=150°,则∠4=∠C.其中正确的结论有()A.①② B.①②③ C.①③④ D.①②④7、如图,、是的外角角平分线,若,则的大小为(

)A. B. C. D.8、下列命题正确的是

()A.三角形的外角大于它的内角B.三角形的一个外角等于它的两个内角C.三角形的一个内角小于与它不相邻的外角D.三角形的外角和是180°第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、如图,在中,,将沿直线m翻折,点B落在点D的位置,则__________.2、如图,四边形ABCD中,点M,N分别在AB,BC上,将沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B=___°.3、如图,射线AB与射线CD平行,点F为射线AB上的一定点,连接CF,点P是射线CD上的一个动点(不包括端点C),将沿PF折叠,使点C落在点E处.若,当点E到点A的距离最大时,_____.4、如图,在四边形ABCD中,∠BCD=50°,∠B=∠D=90°,在BC、CD上分别取一点M、N,使△AMN的周长最小,则∠MAN=_____°.5、如图,点E是AD延长线上一点,如果添加一个条件,使BC∥AD,则可添加的条件为__________.(任意添加一个符合题意的条件即可)6、如图,在ΔABC中,E、F分别是AB、AC上的两点,∠1+∠2=235°,则∠A=____度.7、如图,将三角尺和三角尺(其中)摆放在一起,使得点在同一条直线上,交于点,那么度数等于_____.三、解答题(7小题,每小题10分,共计70分)1、已知:如图1,,BD平分,,过点A作直线,延长CD交MN于点E(1)当时,的度数为______.(2)如图2,当时,求的度数;(3)设,用含x的代数式表示的度数.2、如图,已知于点,于点,,试说明.解:因为(已知),所以().同理.所以().即.因为(已知),所以().所以().3、如图,在四边形中,,,平分交于点,交的延长线于点.(1)求的大小;(2)若,求的大小.4、请阅读下列材料,并完成相应的任务:有趣的“飞镖图”如图,这种形似飞镖的四边形,可以形象地称它为“飞镖图”.当我们仔细观察后发现,它实际上就是凹四边形.那么它具有哪些性质呢?又将怎样应用呢?下面我们进行认识与探究:凹四边形通俗地说,就是一个角“凹”进去的四边形,其性质有:凹四边形中最大内角外面的角等于其余三个内角之和.(即如图1,∠ADB=∠A+∠B+∠C)理由如下:方法一:如图2,连接AB,则在△ABC中,∠C+∠CAB+∠CBA=180°,即∠1+∠2+∠3+∠4+∠C=180°,又∵在△ABD中,∠1+∠2+∠ADB=180°,∴∠ADB=∠3+∠4+∠C,即∠ADB=∠CAD+∠CBD+∠C.方法二:如图3,连接CD并延长至F,∵∠1和∠3分别是△ACD和△BCD的一个外角,......大家在探究的过程中,还发现有很多方法可以证明这一结论,你有自己的方法吗?任务:(1)填空:“方法一”主要依据的一个数学定理是;(2)探索:根据“方法二”中辅助线的添加方式,写出该证明过程的剩余部分;(3)应用:如图4,AE是∠CAD的平分线,BF是∠CBD的平分线,AE与BF交于G,若∠ADB=150°,∠AGB=110°,请你直接写出∠C的大小.5、已知:如图,△ABC是任意一个三角形,求证:∠A+∠B+∠C=180°.6、如图,点A在MN上,点B在PQ上,连接AB,过点A作交PQ于点C,过点B作BD平分∠ABC交AC于点D,且.(1)求证:;(2)若,求∠ADB的度数.7、用两种方法证明“三角形的外角和等于360°”.已知:如图,∠BAE,∠CBF,∠ACD是△ABC的三个外角.求证:∠BAE+∠CBF+∠ACD=360°.证法1:∵________________________________________________________________,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°,∴∠BAE+∠CBF+∠ACD=540°-(∠1+∠2+∠3).∵______________,∴∠BAE+∠CBF+∠ACD=540°-180°=360°.请把证法1补充完整,并用不同的方法完成证法2.-参考答案-一、单选题1、C【解析】【分析】根据内错角相等,两直线平行的判定定理进行解答.【详解】解:当∠1=∠3时,a∥b,∴∠3=∠1=55°,∵∠2+∠3=180°,∴∠2=125°,∴当∠2=125°时,a∥b,故选:C.【考点】本题考查了平行线的性质,熟记“内错角相等,两直线平行”是解题的关键.2、B【解析】【详解】试题解析:在A中,a2=9,b2=4,且3>2,满足“若a2>b2,则a>b”,故A选项中a、b的值不能说明命题为假命题;在B中,a2=9,b2=4,且-3<2,此时虽然满足a2>b2,但a>b不成立,故B选项中a、b的值可以说明命题为假命题;在C中,a2=9,b2=1,且3>-1,满足“若a2>b2,则a>b”,故C选项中a、b的值不能说明命题为假命题;在D中,a2=1,b2=9,且-1<3,此时满足a2<b2,得出a<b,即意味着命题“若a2>b2,则a>b”成立,故D选项中a、b的值不能说明命题为假命题;故选B.考点:命题与定理.3、A【解析】【分析】利用三角形的内角和180°和对顶角相等求解即可.【详解】解:∵∠C+∠CEA+∠CAE=180°,∠D+∠DEB+∠DBC=180°,又∠C=∠D,∠CEA=∠DEB,∴∠CAE=∠DBE=23°.故选:A.【考点】本题考查三角形的内角和定理、对顶角相等,熟练掌握三角形的内角和是180°是解答的关键.4、B【解析】【详解】解:A、等腰三角形的两个底角相等的逆命题为:有两个角相等的三角形为等腰三角形,此逆命题为真命题,所以A选项有逆定理;B、对顶角相等的逆命题为:相等的角为对顶角,此命题为假命题,所以B选项没有逆定理;C、三边对应相等的两个三角形全等的逆命题为:全等的两个三角形的三边对应相等,此逆命题为真命题,所以C选项有逆定理;D、直角三角形的两锐角的和为90°的逆命题为:两锐角的和为90°的三角形为直角三角形,此逆命题为真命题,所以D选项有逆定理.故选B.5、D【解析】【分析】由内错角相等,两直线平行可判断①,由邻补角的定义可判断②,如图,延长交于先求解从而可判断③④,于是可得答案.【详解】解:由题意得:故①符合题意;故②符合题意;如图,延长交于故③④符合题意;综上:符合题意的有①②③④故选D【考点】本题考查的是三角形的内角和定理的应用,平行线的判定与性质,三角形外角的性质,等腰直角三角形的两个锐角都为,掌握以上基础知识是解本题的关键.6、D【解析】【分析】根据平行线的性质和判定和三角形内角和定理逐个判断即可.【详解】解:∵∠2=30°,∠CAB=90°,∴∠1=60°,∵∠E=60°,∴∠1=∠E,∴AC∥DE,故①正确;∵∠CAB=∠DAE=90°,∴∠BAE+∠CAD=90°-∠1+90°+∠1=180°,故②正确;∵BC∥AD,∠B=45°,∴∠3=∠B=45°,∵∠2+∠3=∠DAE=90°,∴∠2=45°,故③错误;∵∠CAD=150°,∠BAE+∠CAD=180°,∴∠BAE=30°,∵∠E=60°,∴∠BOE=∠BAE+∠E=90°,∴∠4+∠B=90°,

∵∠B=45°,∴∠4=45°,∵∠C=45°,∴∠4=∠C,故④正确;所以其中正确的结论有①②④.故选:D.【考点】本题考查了三角形的内角和定理和平行线的性质和判定,能灵活运用定理进行推理是解此题的关键.7、B【解析】【分析】首先根据三角形内角和与∠P得出∠PBC+∠PCB,然后根据角平分线的性质得出∠ABC和∠ACB的外角和,进而得出∠ABC+∠ACB,即可得解.【详解】∵∴∠PBC+∠PCB=180°-∠P=180°-60°=120°∵、是的外角角平分线∴∠DBC+∠ECB=2(∠PBC+∠PCB)=240°∴∠ABC+∠ACB=180°-∠DBC+180°-∠ECB=360°-240°=120°∴∠A=60°故选:B.【考点】此题主要考查角平分线以及三角形内角和的运用,熟练掌握,即可解题.8、C【解析】【详解】【分析】根据三角形的外角性质:①三角形的外角和为360°;②三角形的一个外角等于和它不相邻的两个内角的和;③三角形的一个外角大于和它不相邻的任何一个内角,分别进行分析即可.【详解】A、三角形的外角大于与它不相邻的内角,故A选项错误;B、三角形的一个外角等于与它不相邻的两个内角之和,故B选项错误;C、三角形的一个内角小于和它不相邻的任何一个外角,故C选项正确;D、三角形的外角和是360°,故D选项错误,故选C.【考点】本题主要考查了三角形的外角的性质,关键是熟练掌握性质定理.二、填空题1、【解析】【分析】根据折叠得出∠D=∠B=28°,根据三角形的外角性质得出∠1=∠B+∠BEF,∠BEF=∠2+∠D,求出∠1=∠B+∠2+∠D即可.【详解】解:如图,∵∠B=28°,将△ABC沿直线m翻折,点B落在点D的位置,∴∠D=∠B=28°,∵∠1=∠B+∠BEF,∠BEF=∠2+∠D,∴∠1=∠B+∠2+∠D,∴∠1-∠2=∠B+∠D=28°+28°=56°,故答案为:.【考点】本题考查了三角形的外角性质和折叠的性质,能熟记三角形的外角性质是解此题的关键,注意:三角形的一个外角等于与它不相邻的两个内角的和.2、95【解析】【详解】∵MF//AD,FN//DC,∴∠BMF=∠A=100°,∠BNF=∠C=70°.∵△BMN沿MN翻折得△FMN,∴∠BMN=∠BMF=×100°=50°,∠BNM=∠BNF=×70°=35°.在△BMN中,∠B=180°-(∠BMN+∠BNM)=180°-(50°+35°)=180°-85°=95°.故答案为:953、##59度【解析】【分析】利用三角形三边关系可知:当E落在AB上时,AE距离最大,利用且,得到,再根据折叠性质可知:,利用补角可知,进一步可求出.【详解】解:利用两边之和大于第三边可知:当E落在AB上时,AE距离最大,如图:∵且,∴,∵折叠得到,∴,∵,∴.故答案为:【考点】本题考查三角形的三边关系,平行线的性质,折叠的性质,补角,角平分线,解题的关键是找出:当E落在AB上时,AE距离最大,再解答即可.4、80【解析】【分析】作点A关于BC、CD的对称点A1、A2,根据轴对称确定最短路线问题,连接A1、A2分别交BC、DC于点M、N,利用三角形的内角和定理列式求出∠A1+∠A2,再根据轴对称的性质和角的和差关系即可得∠MAN.【详解】如图,作点A关于BC、CD的对称点A1、A2,连接A1、A2分别交BC、DC于点M、N,连接AM、AN,则此时△AMN的周长最小,∵∠BCD=50°,∠B=∠D=90°,∴∠BAD=360°﹣90°﹣90°﹣50°=130°,∴∠A1+∠A2=180°﹣130°=50°,∵点A关于BC、CD的对称点为A1、A2,∴NA=NA2,MA=MA1,∴∠A2=∠NAD,∠A1=∠MAB,∴∠NAD+∠MAB=∠A1+∠A2=50°,∴∠MAN=∠BAD﹣(∠NAD+∠MAB)=130°﹣50°=80°,故答案为:80.【考点】本题考查了轴对称的最短路径问题,利用轴对称将三角形周长问题转化为两点间线段最短问题是解决本题的关键.5、∠A+∠ABC=180°或∠C+∠ADC=180°或∠CBD=∠ADB或∠C=∠CDE【解析】【分析】同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,据此进行判断(答案不唯一).【详解】解:若,则BC∥AD;若∠C+∠ADC=180°,则BC∥AD;若∠CBD=∠ADB,则BC∥AD;若∠C=∠CDE,则BC∥AD;故答案为∠A+∠ABC=180°或∠C+∠ADC=180°或∠CBD=∠ADB或∠C=∠CDE.(答案不唯一)【考点】本题主要考查了平行线的判定,同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.6、55【解析】【分析】根据三角形内角和定理可知,要求∠A只要求出∠AEF+∠AFE的度数即可.【详解】∵∠1+∠AEF=180°,∠2+∠AFE=180°,∴∠1+∠AEF+∠2+∠AFE=360°,∵∠1+∠2=235°,∴∠AEF+∠AFE=360°−235°=125°,∵在△AEF中:∠A+∠AEF+∠AFE=180°(三角形内角和定理)∴∠A=180°−125°=55°,故答案为:55°【考点】本题是有关三角形角的计算问题.主要考察三角形内角和定理的应用和计算,找到∠A所在的三角形是关键.7、105°【解析】【分析】利用直角三角形的两个锐角互余求得∠ABC与∠FDE的度数,然后在△MDB中,利用三角形内角和定理求得∠DMB,再依据对顶角相等即可求解.【详解】解:∵∠ABC=90°−∠C=90°−60°=30°,∠FDE=90°−∠F=90°−45°=45°,∴∠DMB=180°−∠ABC−∠FDE=180°−30°−45°=105°,∴∠CMF=∠DMB=105°.故答案为:105°.【考点】本题考查了直角三角形两锐角互余、三角形的内角和定理以及对顶角的性质,正确求得∠DMB的度数是关键.三、解答题1、(1)(2)(3)【解析】【分析】(1)根据题意证明,进而可得,根据,即可求解.继而可得,即可求得;(2)根据全等三角形的性质可得,根据三角形内角和定理可得,进而根据即可求解.(3)根据(1)(2)的方法分类讨论即可求解.(1)解:BD平分,,,,,,,,,,,故答案为:,(2)解:由(1)可知,,,,,,,(3)解:设,,,,,当点在点的左侧时,,当点在点的右侧时,,.【考点】本题考查了全等三角形的性质与判定,三角形的内角和定理的应用,掌握全等三角形的性质与判定是解题的关键.2、垂直的定义;等量代换;等式的性质1;内错角相等,两直线平行【解析】【分析】根据垂直定义得出,求出,根据平行线的判定推出即可.【详解】解:因为(已知),所以(垂直的定义),同理.所以(等量代换),即.因为(已知),所以(等式的性质,所以(内错角相等,两直线平行).故答案为:垂直的定义;等量代换;等式的性质1;内错角相等,两直线平行【考点】本题考查了垂直定义和平行线的判定的应用,熟练掌握平行线的判定是解题关键.3、(1)25°(2)23°【解析】【分析】(1)先由平行线的性质求出∠ABC=180°-∠BCD=180°-130°=50°,再根据解平分线的定义求解即可;∠BAD=180°-∠ADC=180°-48°=132°,再根据三角形内角和定理求出(2)先由平行线的性质求出∠AEB=180°-∠BAD-∠ABE=23°,最后由对顶角性质得解.(1)解:∵,∴∠ABC+∠BCD=180°,∴∠ABC=180°-∠BCD=180°-130°=50°,∵平分∴∠ABE=∠ABC==25°;(2)解:∵,∴∠BAD+∠ADC=180°,∴∠BAD=180°-∠ADC=180°-48°=132°,∵∠BAD+∠ABE+∠AEB=180°,又由(1)知:∠ABE=25°,∴∠AEB=180°-∠BAD-∠ABE=180°-132°-25°=23°,∴∠DEF=∠AEB=23°.【考点】本题考查平行线的性质,角平分线定义,三角形内角和定理,对顶角性质,熟练掌握平行线的性质是解题的关键.4、(1)三角形内角和定理(或三角形的内角和等于180°);(2)见解析;(3)70°【解析】【分析】(1)根据三角形内角和定理,即可求解;(2)根据三角形外角的性质可得∠1=∠2+∠A,∠3=∠4+∠B,从而得到∠1+∠3=∠2+∠A+∠4+∠B,即可求证;(3)由(2)可得:∠ADB=∠CAD+∠CBD+∠C,∠AGB=∠CAE+∠CBF+∠C,从而得到∠CAE+∠CBF=110°-∠C,∠CAD+∠CBD=150°-∠C,再由AE是∠CAD的平分线,BF是∠CBD的平分线,可得150°-∠C=2(110°-∠C),即可求解.(1)解:三角形内角和定理(或三角形的内角和等于180°)(2)证明:连接CD并延长至F,∵∠1和∠2分别是△ACD和△BCD的一个外角,∴∠1=∠2+∠A,∠3=∠4+∠B,∴∠1+∠3=∠2+∠A+∠4+∠B,即∠ADB=∠A+∠B+∠ACB;(3)解:由(2)得:∠ADB=∠CAD+∠CBD+∠C,∠AGB=∠CAE+∠CBF+∠C,∵∠ADB=150°,∠AGB=110°,∴∠CAD+∠CBD+∠C=150°,∠CAE+∠CBF+∠C=110°,∴∠CAE+∠CBF=110°-∠C,∠CAD+∠CBD=150°-∠C,∵AE是∠CAD的平分线,BF是∠CBD的平分线,∴∠CAD=2∠CAE,∠CBD=2∠CBF,∴∠CAD+∠CBD=2(∠CAE+∠CBF),∴150°-∠C=2(110°-∠C),解得:∠C=70°.【考点】本题主要考查了三角形的内角和定理,三角形外角的性质,有关角平分线的计算,熟练掌握三角形内角和定理,三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.5、证明见解析【解析】【分析】过点A作EFBC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论