难点解析青岛版8年级数学下册期末试卷有完整答案详解_第1页
难点解析青岛版8年级数学下册期末试卷有完整答案详解_第2页
难点解析青岛版8年级数学下册期末试卷有完整答案详解_第3页
难点解析青岛版8年级数学下册期末试卷有完整答案详解_第4页
难点解析青岛版8年级数学下册期末试卷有完整答案详解_第5页
已阅读5页,还剩27页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

青岛版8年级数学下册期末试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、若关于的不等式组有解,且使关于的分式方程的解为非负数.则满足条件的所有整数的和为(

)A.-9 B.-8 C.-5 D.-42、如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A. B.2 C. D.23、二次根式有意义,则x满足的条件是()A.x<2 B.x>2 C.x≥2 D.x≤24、如图,点A的坐标是(2,2),若点P在x轴上,且△AOP是等腰三角形,则点P的坐标不可能是()A.(2,0) B.(4,0) C.(﹣,0) D.(3,0)5、与是同类二次根式的是(

)A. B. C. D.6、下列运算中,正确的是(

)A. B.C. D.7、有五根小木棒,其长度分别为7,15,24,25,现将它们摆成两个直角三角形,其中正确的是()A. B.C. D.8、下列各数中,无理数是()A. B.3.14 C. D.第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、如图,在Rt△ABC中,∠C=90°,BD平分∠ABC,AD=4,CD=2,那么∠A=____度.2、如图,矩形纸片ABCD中,AB=6,BC=10,先按图②操作:将矩形纸片ABCD沿过点A的直线折叠,使点B落在边AD上的点E处,折痕为AF;再按图③操作,沿过点E的直线折叠,使点D落在EF上的点H处,折痕为EG,则FH=_____.3、的平方根为_____,的绝对值为____.4、已知直线,点A与原点O关于直线l对称,则线段的最大值是_________.5、如图①,在△ABC中,∠ACB=90°,∠A=30°,点C沿BE折叠与AB上的点D重合,连接DE,请你探究:______;请在这一结论的基础上继续思考:如图②,在△OPM中,∠OPM=90°∠M=30°,若OM=2,点G是OM边上的动点,则的最小值为______.6、如图,长方体的长EF=8,宽AE=2,高AD=4,已知蚂蚁从顶点G出发,沿长方体的表面到达棱AD的中点B处,则它爬行的最短路程为_____.(结果保留根号)7、如图,直线与直线交于点,由图象可知,不等式的解为______.三、解答题(7小题,每小题10分,共计70分)1、小李在某网店选中A、B两款玩偶,确定从该网店进货并销售.两款玩偶的进货价和销售价如表:类别价格A款玩偶B款玩偶进货价(元/个)4030销售价(元/个)5645(1)第一次小李用1100元购进了A、B两款玩偶共30个,求两款玩偶各购进多少个?(2)第二次小李进货时,网店规定A款玩偶进货数量不得超过B款玩偶进货数量的一半,小李计划购进两款玩偶60个.设小李购进A款玩偶m个,售完两款玩偶共获得利润W元,问应如何设计进货方案才能获得最大利润?并求W的最大值.2、济南某社区为倡导健康生活,推进全民健身,去年购进A,B两种健身器材若干件.经了解,B种健身器材的单价是A种健身器材的1.5倍,用6000元购买A种健身器材比用3600元购买B种健身器材多15件.(1)A,B两种健身器材的单价分别是多少元?(2)若今年两种健身器材的单价和去年保持不变,该社区计划再购进A,B两种健身器材共60件,且B种健身器材的数量不少于A种健身器材的4倍,请你确定一种购买方案使得购进A,B两种健身器材的费用最少.3、如图,矩形ABCD中,E、F分别为边AD和BC上的点,BE=DF,求证:DE=BF.4、在平面直角坐标系中,将两块分别含45°和30°的直角三角板按如图放置(∠C=30°,AC=2AB),BC=.(1)点A坐标为____________,点B坐标为______________,点C坐标为________________;(2)平面内存在点D(与点A不重合),使得△DBC与△ABC全等,请你直接写出点D的坐标.5、在如图所示的方格纸中,点是的边OB上的一点.(1)将OP向右平移,使点O与点A重合.①画出线段OP平移后的线段;②与OP的位置关系是______,数量关系是______;(2)请在射线OA上找出一点D,使得点P到点D的距离最短,并写出依据____________;(3)若在线段OB上有一点E,满足,请用无刻度的直尺,在方格纸中画出点E,并简要说明点E的位置是如何找到的(不要求证明)______.6、如图,△ABC和△ADE是两个叠放在一起的全等的直角三角形,∠B=30°,△ABC固定不动,将△ADE绕直角顶点A旋转,边AD与边BC交于点P(不与点B,C重合),∠PAC和∠PCA的平分线交于点I.(1)当△ABP是等腰三角形时,求∠PAC的度数;(2)在△ADE的旋转过程中,PD的长度在不断发生变化,当PD取最大值时,求∠AIC的度数;(3)确定∠AIC度数的取值范围.7、某邮递公司收费方式有两种:方式一:邮递物品不超过3千克,按每千克2元收费;超过3千克,3千克以内每千克2元,超过的部分按每千克1.5元收费.方式二:基础服务费4元,另外每千克加收1元.小王通过该邮递公司邮寄一箱物品的质量为x千克(x>3).(1)请分别直接写出小王用两种付费方式所需的邮递费用y(元)与x(千克)之间的函数关系式,并在如图所示的直角坐标系中画出图象;(2)若两种付费方式所需邮递费用相同,求这箱物品的质量;(3)若采用“方式二”所需要邮递费用比采用“方式一”便宜5元,求这箱物品的质量.-参考答案-一、单选题1、A【解析】【分析】先求不等式组的解集,根据不等式组有解,可得,然后再解出分式方程,再根据分式方程的解为非负数,可得,即可求解.【详解】解:,解不等式①,得:,解不等式②,得:,∵不等式组有解,∴,解得:,,去分母得:,∵分式方程的解为非负数,且不等于2∴,即且,∴,且∴满足条件的所有整数有-5、-4、-3、-2、0、1、2、3,∴满足条件的所有整数的和.故选:B.【点睛】本题主要考查了解一元一次不等式组和分式方程,熟练掌握解一元一次不等式组和分式方程的基本步骤是解题的关键.2、C【解析】【分析】通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=,应用两次勾股定理分别求BE和a.【详解】解:过点D作DE⊥BC于点E,由图象可知,点F由点A到点D用时为as.∴,∴,∴DE=2.当点F从D到B时,用时为s∴BD=∴在中,.∴,∴在中,,即,解得:.故选:C.【点睛】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.3、B【解析】【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,列不等式求解.【详解】解:根据题意得:x﹣2>0,解得,x>2.故选:B.【点睛】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.当二次根式在分母上时还要考虑分母不等于零,此时被开方数大于0.4、D【解析】【分析】先根据勾股定理求出OA的长,再根据①AP=PO;②AO=AP;③AO=OP分别算出P点坐标即可.【详解】解:点A的坐标是(2,2),根据勾股定理可得:OA==,①若AP=PO,可得:P(2,0),②若AO=AP可得:P(4,0),③若AO=OP,可得:P(,0)或(-,0),故点P的坐标不可能是:(3,0).故选:D.【点睛】此题主要考查了坐标与图形的性质,等腰三角形的判定,勾股定理,关键是掌握等腰三角形的判定:有两边相等的三角形是等腰三角形,再分情况讨论.5、D【解析】【分析】将各选项化简,被开方数是2的二次根式是的同类二次根式,从而得出答案.【详解】解:A选项,,故该选项不符合题意;B选项,是最简二次根式,被开方数不是2,故该选项不符合题意;C选项,=2,故该选项不符合题意;D选项,,故该选项符合题意;故选:D.【点睛】本题考查了同类二次根式,二次根式的性质与化简,掌握一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式是解题的关键.6、A【解析】【分析】根据合并同类项、同底数幂的除法、完全平方公式以及二次根式的除法运算即可求出答案.【详解】解:A、原式,故选项A符合题意.B、原式,故选项B不符合题意.C、原式=9aD、原式,故选项D不符合题意.故选:A.【点睛】本题考查了合并同类项、同底数幂的除法、完全平方公式以及二次根式的除法运算,本题属于基础题型.7、D【解析】【分析】根据图中所给出的数,找出组成三角形的三边,并判断较小两边的平方和是否等于最大边的平方,每一个图判断两次即可.【详解】解:∵72=49,242=576,202=400,152=225,252=625,∴72+242=252,152+202≠242,152+202=252,∴A错误,B错误,C错误,D正确.故选:D.【点睛】本题考查了勾股定理的逆定理,解题的关键是注意是判断较小两边的平方和是否等于最大边的平方.8、D【解析】【分析】根据无理数是无限不循环小数进行逐项判断即可.【详解】解:A、-2是有理数,不符合题意;B、3.14是有理数,不符合题意;C、是有理数,不符合题意;D、是无理数,符合题意,故选:D.【点睛】本题主要考查无理数,解答的关键掌握无理数与有理数的概念:有理数包含整数和分数、无理数为无限不循环小数.二、填空题1、【解析】【分析】过点D作DE⊥AB于E,取A、D的中点F,连接EF,根据角平分线性质求出,然后通过证明是等边三角形得出,由三角形内角和定理即可求解.【详解】证明:过点D作DE⊥AB于E,取A、D的中点F,连接EF,则,∵,∴,∵EF是的中线,∴,∵∠C=90°,BD平分∠ABC,CD=2,∴,∴,∴是等边三角形,∴,∴故答案为:30.【点睛】本题考查了三角形内角和定理、角平分线性质的应用及直角三角形斜边上的中线,解题的关键是做辅助线证明是等边三角形,注意:角平分线上的点到角的两边的距离相等.2、【解析】【分析】根据折叠的性质可得,,,,进而可得【详解】解:∵将矩形纸片ABCD沿过点A的直线折叠,使点B落在边AD上的点E处,折痕为AF;∴,沿过点E的直线折叠,使点D落在EF上的点H处,折痕为EG,故答案为:2【点睛】本题考查了矩形的性质,折叠的性质,等腰三角形的性质,掌握折叠的性质是解题的关键.3、

【解析】【分析】先计算出的立方根,再根据平方根的定义进行求解;根据绝对值的定义进行求解.【详解】解:①,的平方根是,的平方根是;②的绝对值是.故答案为:;.【点睛】本题了平方根和绝对值和立方根,理解平方根和绝对值的定义是解答关键.正数的平方根有两个,它们互为相反数,负数的绝对值是正数.4、【解析】【分析】如图,对于一次函数y=k(x−1)+3,过定点B(1,3).O、A关于直线y=k(x−1)+3对称,可得OB=AB=,再根据OA≤OB+AB=2,可得结论.【详解】解:如图,对于一次函数y=k(x−1)+3,过定点B(1,3).∵O、A关于直线y=k(x−1)+3对称,∴OB=AB=,∵OA≤OB+AB=2,∴OA的最大值为2.故答案为:2.【点睛】本题考查轴对称的性质,一次函数的性质,勾股定理等知识,解题的关键是发现直线过定点B(1,3),推出AB=OB=解决问题.5、

【解析】【分析】①根据直角三角形及折叠的性质可得,,,,由等角对等边及等腰三角形的性质可得,,利用线段间的数量关系进行等量代换即可得;②作射线MB,使得,过点G作,过点P作交于点C,连接PB,利用勾股定理可得,,由含角的直角三角形的性质可得,根据题意得出最小值即为的最小值,即当P、G、B三点共线时,PC的长度,在中,利用勾股定理求解即可得出PC的长度,即为最小值.【详解】解:①∵,∴,∵点C沿BE折叠与AB上的点D重合,∴,∴,,,∴,∴,,∴,∴,即;②如图所示:作射线MB,使得,过点G作,过点P作交于点C,连接PB,在中,,,∴,,∵,,∴,∴,即当P、G、B三点共线时,取得最小值,在中,∵,,,∴,∴,,∴的最小值为;故答案为:①;②.【点睛】题目主要考查折叠的性质及等腰三角形的判定和性质,勾股定理,含角的直角三角形的性质等,理解题意,作出相应辅助线,综合运用这些知识点是解题关键.6、【解析】【分析】分三种情况:展开长方体的正面和上面,展开长方体的正面和右面,展开长方体的左面和上面,利用勾股定理分别求出对应的最小长度,最后比较即可.【详解】解:如图所示展开正面和上面,连接BG,,∴EF=CG=HD=8,AE=GH=2,∠H=90°,∵B是AD的中点,AD=4,∴,∴BH=HD+BD=10,∴;同理可以求出当展开正面和右面时,,当展开左面和上面时,,∵,∴,∴它爬行的最短路程为,故答案为:.【点睛】本题主要考查了勾股定理的应用,实数比较大小,解题的关键在于能够根据题意利用分类讨论的思想求解.7、【解析】【分析】观察图象知,直线的图象位于直线的图象上方或两直线相交时,函数的函数值大于或等于函数的函数值,从而可求得的解.【详解】由图象知:不等式的解为故答案为:【点睛】本题考查了两直线相交与一元一次不等式的关系,数形结合是关键.三、解答题1、(1)A款玩偶购进20个,B款玩偶购进10个;(2)按照A款玩偶购进20个,B款玩偶购进40个的方案进货才能获得最大利润,最大利润是920元.【解析】【分析】(1)根据第一次购进30个,设A款玩偶购进x个,则B款玩偶购进(30-x)个,再由用1100元购进了A,B两款玩偶建立方程求出其解即可;(2)根据第二次购进两款玩偶60个,设A款玩偶购进m个,则B款玩偶购进(60-m)个,获利W元,根据题意可以得到利润与A款玩偶数量的函数关系,然后根据A款玩偶进货数量不得超过B款玩偶进货数量的一半,可以求得A款玩偶数量的取值范围,再根据一次函数的性质,即可求得如何设计进货方案才能获得最大利润.(1)解:设A款玩偶购进x个,B款玩偶购进(30-x)个,由题意可得,解得,B款玩偶购进:30-20=10(个)答:A款玩偶购进20个,B款玩偶购进10个.(2)解:设A款玩偶购进m个,B款玩偶购进(60-m)个,获利W元,由题意可得,∵A款玩偶进货数量不得超过B款玩偶进货数量的一半∴∴∵∴∴W随m的增大而增大∴时,∴B款玩偶有60-20=40(个)答:按照A款玩偶购进20个,B款玩偶购进40个的方案进货才能获得最大利润,最大利润是920元.【点睛】本题考查了列一元一次方程解实际问题的运用以及一次函数的运用,解答时由销售问题的数量关系求出一次函数的解析式是关键.2、(1)A,B两种健身器材的单价分别是240元,360元(2)购买A种健身器材12件B种健身器材48件时费用最小【解析】【分析】(1)设A种健身器材的单价为x元/件,B种健身器材的单价为1.5x元/件,根据“用6000元购买A种健身器材比用3600元购买B种健身器材多15件”,列出分式方程,解之即可得出结论;(2)设购买A种健身器材m件,则购买B种的健身器材(60-m)件,B种健身器材的数量不少于A种健身器材的4倍列出不等式和购买两种器材的费用列出函数关系式然后进行讨论即可.(1)设A种健身器材的单价为x元,B种健身器材的单价为1.5x元,根据题意得:﹣=15,解得:x=240,经检验x=240是原方程的解,且符合题意,则1.5×240=360(元),答:A,B两种健身器材的单价分别是240元,360元;(2)设购买A种型号健身器材m件,则购买B种型号的健身器材(60﹣m)件,总费用为y元,根据题意得:,解得:0≤x≤12,y=240m+360(60﹣m)=﹣120m+21600,∵﹣120<0,∴y随m的增大而减小,∴当m取最大值12时,即购买A种器材12件,购买B种健身器材60﹣12=48件时y最小.答:购买A种健身器材12件B种健身器材48件时费用最小.【点睛】本题考查了一次函数的应用和分式方程的应用,关键是找准数量关系列出方程和函数关系式以及m的取值范围.3、见解析【解析】【分析】先利用四边形ABCD是矩形,得出AB=CD,AD=BC,∠A=∠D=90°,然后证明△ABE≌△CDF即可.【详解】证明:∵四边形ABCD是矩形,∴AB=CD,AD=BC,∠A=∠D=90°,在Rt△ABE和Rt△CDF中,,∴Rt△ABE≌Rt△CDF(HL),∴AE=CF,∴DE=BF.【点睛】本题考查矩形的性质以及直角三角形全等的判定.熟练掌握利用证三角形全等来证线段相等方法是解题的关键.4、(1)(2)【解析】【分析】(1)利用勾股定理先求解再利用等腰直角三角形的性质求解可得的坐标,如图,过作于再证明再利用勾股定理可得答案;(2)分三种情况讨论:如图,把沿对折可得:如图,取的中点延长至D,使连接如图,取的中点延长至D,使连接结合中点坐标公式可得答案.(1)解:∠C=30°,AC=2AB,BC=,解得:解得:如图,过作于解得:故答案为:(2)解:如图,把沿对折可得:结合中点坐标可得:如图,取的中点延长至D,使连接由如图,取的中点延长至D,使连接同理可得:综上:D的坐标为【点睛】本题考查的是坐标与图形,勾股定理的应用,全等三角形的判定与性质,中点坐标公式的应用,掌握“全等变换的基本图形”是解本题的关键.5、(1)①见解析;②平行;相等(2)见解析,垂线段最短(3)取格点C,过点C作OB的垂线交OB于点E【解析】【分析】(1)①分别确定平移后的对应点即可,②由平移的性质可得答案;(2)过画的垂线即可,再根据垂线段的性质可得答案;(3)过点C画OB的垂线交OB于点E,由三角形的内角和定理结合同角的余角相等可得答案.(1)解:①如图所示即为所求②由平移的性质可得:故答案为:平行,相等,(2)解:如图所示PD即为所求,依据:垂线段最短(3)解:如图所示点E即为所求,方法:取格点C,过点C画OB的垂线交OB于点E.理由如下:【点睛】本题考查的是平移的作图,平移的性质,画已知直线的垂线,垂线段最短,同角的余角相等,三角形的内角和定理的应用,掌握以上基础知识是解本题的关键.6、(1)60°或15°(2)135°(3)105°<∠AIC<150°【解析】【分析】(1)分AP=BP和AP=BP两种情况讨论,计算即可求解;(2)当AP取最小值时PD取最大值,此时AP与BC垂直,利用角平分线的定义以及三角形内角和定理即可求解;(3)设∠BAP=α,利用角平分线的定义得到∠IAC=∠PAC,∠ICA=∠PCA,利用三角形内角和定理即可求解.(1)解:当AP=BP时,∵∠B=30°,∴∠B=∠BAP=30°,∵∠BAC=90°,∴∠PAC=90°-30°=60°;当AB=BP时,∵∠B=30°,∴∠APB=∠BAP=(180°-30°)=75°,∵∠BAC=90°,∴∠PAC=90°-75°=15°

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论