




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
装订线装订线PAGE2第1页,共2页郑州电子信息职业技术学院《设计构成》2024-2025学年第一学期期末试卷院(系)_______班级_______学号_______姓名_______题号一二三四总分得分批阅人一、单选题(本大题共25个小题,每小题1分,共25分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、计算机视觉在安防监控领域有广泛应用。假设要通过监控摄像头实时检测人群中的异常行为,以下关于实时性和准确性的平衡,哪一项是最为关键的?()A.优先保证实时性,即使准确性略有降低B.优先保证准确性,允许一定的延迟C.不考虑实时性和准确性,只要能检测出异常行为即可D.完全无法平衡实时性和准确性,只能根据具体情况选择其一2、在计算机视觉的人脸识别任务中,需要应对姿态、表情和光照等变化。假设要构建一个能够在不同环境下准确识别人脸的系统,以下哪种人脸识别方法在处理这些变化时具有更高的准确性和鲁棒性?()A.基于特征点的人脸识别B.基于模板匹配的人脸识别C.基于深度学习的人脸识别D.基于几何形状的人脸识别3、在计算机视觉的医学图像分析任务中,假设要检测医学图像中的肿瘤区域。以下哪种方法可能更适合处理医学图像的特殊性?()A.结合先验医学知识和图像特征B.使用通用的图像检测算法,不考虑医学背景C.只对图像的部分区域进行分析,忽略其他部分D.随机标记图像中的区域为肿瘤区域4、在计算机视觉中,目标检测是一项关键任务。假设要开发一个能够在复杂的城市交通场景中准确检测出各种车辆类型的系统,需要考虑车辆的不同尺寸、形状和姿态,以及光照、阴影和遮挡等因素的影响。以下哪种目标检测算法在处理这种复杂场景时具有较好的性能和鲁棒性?()A.R-CNNB.FastR-CNNC.FasterR-CNND.YOLO5、计算机视觉在智能交通系统中的应用可以优化交通流量和提高安全性。假设要通过计算机视觉监测道路上的车辆拥堵情况。以下关于计算机视觉在智能交通中的描述,哪一项是错误的?()A.可以通过车辆检测和计数来评估道路的拥堵程度B.能够识别车辆的类型和行驶方向,为交通管理提供数据支持C.计算机视觉在智能交通中的应用完全不受恶劣天气和光照条件的影响D.可以与交通信号控制系统联动,实现自适应的交通信号配时6、在计算机视觉的动作识别任务中,识别视频中的人物动作。假设要识别一段舞蹈视频中的动作,以下关于动作识别方法的描述,哪一项是不正确的?()A.可以提取视频中的时空特征,如光流和运动轨迹,来描述动作B.基于深度学习的方法,如3D卷积神经网络,能够直接处理视频数据,进行动作识别C.动作识别需要考虑动作的速度、幅度和节奏等特征D.动作识别只适用于简单的、规范化的动作,对于复杂的、个性化的动作无法准确识别7、在计算机视觉的图像增强任务中,假设要提高一张低光照图像的质量。以下关于图像增强方法的描述,正确的是:()A.直方图均衡化能够均匀分布图像的灰度级,但可能会导致细节丢失B.基于滤波的方法可以有效地去除噪声,但同时也会模糊图像的边缘C.伽马校正只适用于校正过亮的图像,对于低光照图像效果不佳D.所有的图像增强方法都能够在不引入任何失真的情况下提高图像质量8、在计算机视觉中,目标检测是一项重要任务。假设我们要开发一个能够在交通场景中检测车辆的系统。如果图像中的车辆存在多种姿态、大小和光照条件的变化,以下哪种目标检测算法可能更适合应对这种复杂情况?()A.基于传统特征的检测算法,如HOG特征结合SVM分类器B.基于深度学习的FasterR-CNN算法C.基于模板匹配的检测算法D.基于颜色特征的检测算法9、在计算机视觉的实际应用中,模型的实时性是一个重要的考虑因素。以下关于实时性的描述,不正确的是()A.对于一些需要实时响应的应用,如自动驾驶和工业检测,模型的处理速度至关重要B.模型的复杂度、计算资源和算法效率都会影响实时性C.可以通过模型压缩、硬件加速和优化算法等方法来提高模型的实时性D.实时性只与模型本身有关,与硬件设备和系统架构无关10、计算机视觉中的场景文本识别旨在从图像中识别出文字信息。假设要在一张街景图像中识别出店铺招牌上的文字。以下关于场景文本识别方法的描述,正确的是:()A.基于光学字符识别(OCR)技术的方法对字体和排版的变化适应性强,识别准确率高B.深度学习中的端到端文本识别模型能够处理弯曲和变形的文本,但对模糊文本效果不佳C.场景文本识别只需要关注文本的内容,不需要考虑文本的位置和上下文信息D.所有的场景文本识别方法都能够在复杂的自然场景中准确无误地识别出各种文字11、在计算机视觉中,图像去雾是提高有雾图像质量的技术。以下关于图像去雾的描述,不准确的是()A.图像去雾可以基于物理模型或深度学习方法来实现B.深度学习方法在图像去雾中能够有效地恢复图像的细节和颜色C.图像去雾只对轻度有雾的图像有效,对于浓雾图像效果不佳D.图像去雾可以提高图像的清晰度和可视性,有助于后续的处理和分析12、在计算机视觉的车牌识别任务中,假设要从不同角度和光照条件下拍摄的车辆图像中准确识别出车牌号码。以下哪种技术可能有助于提高识别准确率?()A.字符分割和单独识别B.利用深度学习模型进行端到端的识别C.只关注车牌的颜色特征D.随机猜测车牌号码13、计算机视觉在农业领域的应用可以帮助实现精准农业。假设一个农场需要通过计算机视觉监测农作物的生长状况。以下关于计算机视觉在农业中的描述,哪一项是错误的?()A.可以检测农作物的病虫害,及时采取防治措施B.能够评估农作物的生长阶段和成熟度,指导收获时间C.计算机视觉在农业中的应用完全不受天气和光照条件的影响D.可以通过无人机搭载摄像头进行大面积的农田监测14、目标检测是计算机视觉中的常见任务,例如在监控视频中检测行人或车辆。假设我们要开发一个目标检测系统,以下关于目标检测算法的描述,哪一项是不正确的?()A.基于区域建议的方法,如R-CNN系列算法,通过生成候选区域并对其进行分类和定位来实现目标检测B.一阶段目标检测算法,如YOLO和SSD,直接在图像上进行目标的分类和定位,速度相对较快C.目标检测算法的性能通常用准确率、召回率和平均精度均值(mAP)等指标来评估D.目标检测算法的精度和速度是相互独立的,提高精度不会影响速度,反之亦然15、计算机视觉中的姿态估计任务是估计人体或物体在三维空间中的姿态。假设要估计一个人体模特的姿态。以下关于姿态估计的描述,哪一项是不正确的?()A.可以通过关键点检测和关节角度计算来估计人体姿态B.深度学习中的卷积神经网络可以直接预测人体姿态的参数C.姿态估计在虚拟现实和增强现实等应用中具有重要作用D.姿态估计的结果总是非常准确,不受人体遮挡和复杂动作的影响16、在计算机视觉的图像分类任务中,假设数据集存在类别不平衡问题,某些类别的样本数量远远少于其他类别。以下哪种方法可以缓解这种不平衡对分类模型的影响?()A.对少数类进行过采样或对多数类进行欠采样B.只使用多数类的样本进行训练C.不考虑类别不平衡,直接训练模型D.随机选择样本进行训练17、在进行计算机视觉的三维重建时,需要从多个视角的图像中恢复物体的三维形状和结构。假设要对一个复杂的古建筑进行三维重建,图像采集存在视角偏差和部分遮挡。以下哪种三维重建方法在处理这种不完整和有噪声的数据时效果较好?()A.基于立体视觉的重建B.基于运动恢复结构(SfM)的重建C.基于激光扫描的重建D.基于深度学习的重建18、在计算机视觉的三维重建任务中,我们需要从多幅二维图像中恢复物体的三维结构。假设我们只有少量的、视角有限的图像,以下哪种重建方法可能面临较大挑战?()A.基于立体视觉的重建方法B.基于运动恢复结构(StructurefromMotion)的方法C.利用激光扫描数据进行重建D.基于模型拟合的重建方法19、计算机视觉中的图像去噪旨在去除图像中的噪声,恢复清晰的图像。假设要处理一张受到严重噪声污染的天文图像,以下关于去噪算法的选择,哪一项是需要谨慎考虑的?()A.选择基于滤波的去噪算法,如中值滤波B.采用基于深度学习的去噪算法,如自编码器C.只考虑去噪效果,不关心图像细节的保留D.根据噪声的类型和强度选择合适的去噪算法20、在计算机视觉的图像超分辨率重建中,提高低分辨率图像的清晰度。假设要将一张模糊的图像重建为清晰的高分辨率图像,以下关于图像超分辨率重建方法的描述,哪一项是不正确的?()A.基于插值的方法通过在像素之间插入新的值来增加图像的分辨率,但可能会导致图像模糊B.基于深度学习的方法能够学习低分辨率图像和高分辨率图像之间的映射关系,重建出更清晰的图像C.图像超分辨率重建可以无限制地提高图像的分辨率,不受原始图像信息的限制D.为了获得更好的重建效果,可以结合多种超分辨率重建方法或使用先验知识21、计算机视觉在自动驾驶领域有重要应用。假设要开发一个能够识别道路标志的系统,以下关于应对不同光照条件的策略,哪一项是最为有效的?()A.使用固定的阈值对图像进行二值化处理B.采用自适应的图像增强算法,根据光照情况调整图像C.忽略光照变化,依靠模型的泛化能力D.只在特定的光照条件下收集训练数据22、在计算机视觉中,以下哪种方法常用于图像的显著目标检测中的高层语义信息利用?()A.深度学习B.图模型C.注意力机制D.以上都是23、在计算机视觉的姿态估计任务中,例如估计人体关节的位置和姿态,以下哪种方法可能在精度和实时性之间取得较好的平衡?()A.基于模型的方法B.基于深度学习的回归方法C.基于深度学习的分类方法D.以上都不是24、计算机视觉中的视频分析需要对连续的图像帧进行处理和理解。假设要分析一段监控视频中的人群行为,包括行走方向、聚集和分散等。以下哪种视频分析技术在处理这种复杂的群体行为时最为有效?()A.帧间差分法B.背景减除法C.光流法结合轨迹分析D.深度学习的行为识别模型25、计算机视觉在自动驾驶领域发挥着重要作用。假设一辆自动驾驶汽车正在道路上行驶,需要识别各种交通标志、车辆和行人。以下关于自动驾驶中计算机视觉的描述,哪一项是不正确的?()A.计算机视觉可以通过摄像头实时获取道路信息,为车辆的决策和控制提供依据B.它能够准确识别不同光照和天气条件下的交通对象,不受任何干扰C.深度学习算法在自动驾驶的计算机视觉中被广泛应用,用于目标检测和语义分割D.计算机视觉需要与其他传感器(如雷达、激光雷达)的数据融合,以提高感知的可靠性二、简答题(本大题共4个小题,共20分)1、(本题5分)说明计算机视觉在海洋考古中的作用。2、(本题5分)简述计算机视觉中的图像分割技术。3、(本题5分)解释计算机视觉中的注意力机制在图像理解中的作用。4、(本题5分)说明计算机视觉在金融行业中的身份验证和欺诈检测。三、分析题(本大题共5个小题,共25分)1、(本题5分)某化妆品品牌的线上广告设计动态精美,突出产品效果。请分析线上广告设计在吸引消费者点击、展示产品优势、提升品牌形象方面的手法和成效,以及如何根据不同网络平台和广告投放策略进行调整。2、(本题5分)分析苹果手机的照片编辑功能广告设计,从编辑效果展示、便捷操作到品牌形象传达。探讨其如何吸引摄影爱好者使用苹果手机进行照片编辑。3、(本题5分)探讨某服装品牌的新品发布会邀请函设计,研究其如何通过独特的材质、工艺
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025儿童医院临床研究设计考核
- 2025年餐饮服务业预付卡销售代理协议
- 重庆市人民医院烧伤康复治疗方案制定考核
- 巴彦淖尔市人民医院无痛胃肠镜技术考核
- 2025年下半年广东中山市板芙镇政府招聘合同制人员23人易考易错模拟试题(共500题)试卷后附参考答案
- 2025年下半年广东中山市三角镇人民政府招聘事业单位人员6人易考易错模拟试题(共500题)试卷后附参考答案
- 2025年下半年广东东莞市桥头镇机关事业单位招录聘员30人重点基础提升(共500题)附带答案详解
- 2025年医院药事管理及精麻药品使用管理知识试题及参考答案
- 鸡西市中医院血管外科住院医师规范化培训考核
- 2025年下半年工业和信息化部应急通信保障中心应届生招聘易考易错模拟试题(共500题)试卷后附参考答案
- 干雾抑尘设备施工方案
- 2025年国家电投笔试考试及答案
- 2025广西北海市检察机关聘用人员控制数招聘26人考试模拟试题及答案解析
- 2025年中移铁通有限公司甘肃分公司社会招聘考试参考题库及答案解析
- 校园室内设计方案
- 酒店治安管理制度模板
- 2025年社区网格工作人员考试题库及答案
- 小学生心理团辅方案与记录模板
- 2025年淮南市大通区和寿县经开区公开招聘社区“两委”后备干部30名备考考试题库附答案解析
- 游戏厅安全管理细则
- 国防科大优势课件
评论
0/150
提交评论