难点解析冀教版9年级下册期末试卷及答案详解【易错题】_第1页
难点解析冀教版9年级下册期末试卷及答案详解【易错题】_第2页
难点解析冀教版9年级下册期末试卷及答案详解【易错题】_第3页
难点解析冀教版9年级下册期末试卷及答案详解【易错题】_第4页
难点解析冀教版9年级下册期末试卷及答案详解【易错题】_第5页
已阅读5页,还剩31页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

冀教版9年级下册期末试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、已知点A是⊙O外一点,且⊙O的半径为3,则OA可能为()A.1 B.2 C.3 D.42、如图是正方体的展开图,则与“脱”字所在面相对的面上标的字是()A.取 B.得 C.胜 D.利3、如图,在直角坐标系中,点P(2,2)是一个光源.木杆AB两端的坐标分别为(0,1),(3,1).则木杆AB在x轴上的投影长为()A.3 B.4 C.5 D.64、分别写有数字-1,-2,1,3,4的五张卡片,除数字外其他均相同,将它们背面朝上,从中任抽一张,抽到负数的概率是()A. B. C. D.5、下列事件为必然事件的是()A.购买一张彩票,中奖 B.乘公交车到十字路口,遇到红灯C.射击运动员射击一次,命中靶心 D.明天太阳从东方升起6、在“爱国、爱党”主题班会上,小颖特别制作了一个正方体玩具,其表面展开图如图所示,则原正方体中与“有”字相对的字是()A.少 B.年 C.有 D.国7、下列事件中,是必然事件的是()A.400人中有两个人的生日在同一天 B.两条线段可以组成一个三角形C.早上的太阳从西方升起 D.打开电视机,它正在放动画片8、二次函数y=-(x+2)+1的顶点坐标为()A.(-2,1) B.(2,1) C.(2,-1) D.(2,-1)9、下列说法正确的是()A.三点确定一个圆 B.任何三角形有且只有一个内切圆C.相等的圆心角所对的弧相等 D.正多边形一定是中心对称图形10、已知点A(−1,a),B(1,b),C(2,c)是抛物线y2x上的三点,则a,b,c的大小关系为()A.a>c>b B.b>a>c C.b>c>a D.c>a>b第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题2分,共计20分)1、抛物线y=2(x﹣3)2+7的顶点坐标为_____.2、定义:在平面直角坐标系中,若点的横、纵坐标都为整数,则把这样的点叫做“整点”.如:A(1,0),B(﹣3,2)都是“整点”,抛物线y=ax2﹣2ax+a+2(a<0)与x轴交于P,Q两点,若该抛物线在P,Q之间的部分与线段PQ所围的区域(不包括边界)恰有3个整点,则a的取值范围是_____.3、明明家过年时包了50个饺子,其中有5个饺子包有幸运果.明明一家人连续吃了10个饺子都没有吃到幸运果,那么明明在剩余的饺子中任意挑选一个饺子,正好是包有幸运果饺子的概率是_____.4、如图,在平面直角坐标系xOy中,点A与点B的坐标分别是(1,0)与(7,0).对于坐标平面内的一动点P,给出如下定义:若∠APB=45°,则称点P为线段AB的“等角点.”①若点P为线段AB在第一象限的“等角点”,且在直线x=4上,则点P的坐标为__________________;②若点P为线段AB的“等角点”,并且在y轴上,则点P的坐标为__________________.5、如图,在△ABC中,∠ACB=90°,CD=2,以CD为直径的⊙与AB相切于点E.若弧DE的长为为π,则阴影部分的面积为_____.(保留π)6、已知二次函数,当y随x的增大而增大时,自变量x的取值范围是______.7、如图,抛物线与x轴交于A、B两点,P是以点C(0,3)为圆心,2为半径的圆上的动点,Q是线段PA的中点,连接OQ.则线段OQ的最大值是______.8、小明同学在数学实践课上,所设计的正方体盒子的平面展开图如图,每个面上都有一个汉字,请你判断,正方体盒子上与“校”字相对的面上的字是_____.9、将二次函数的图象向左平移1个单位,再向上平移1个单位,得到的新图象函数的表达式为______.10、圆锥的底面周长为3,母线长为5cm,该圆锥侧面展开扇形的圆心角是________°.三、解答题(6小题,每小题10分,共计60分)1、如图,在中,,BO平分,交AC于点O,以点O为圆心,OC长为半径画.(1)求证:AB是的切线;(2)若,,求的半径.2、如图是由10个边长为1的小正方体组合成的简单几何体.(1)画出该几何体的主视图、左视图和俯视图;(2)该几何体的表面积(含底面)是______.3、图中的几何体是用若干个棱长为的小正方体搭成的,其左视图如图所示.(1)这个几何体的体积为__________;(2)请在方格纸中用实线画出该几何体的主视图、俯视图;(3)这个几何体的表面积为__________.4、(1)回归教材:北师大七年级下册P44,如图1所示,点P是直线m外一点,,点O是垂足,点A、B、C在直线m上,比较线段PO,PA,PB,PC的长短,你发现了什么?最短线段是______,于是,小明这样总结:直线外一点与直线上各点连接的所有线段中,______.(2)小试牛刀:如图2所示,中,,,.则点P为AB边上一动点,则CP的最小值为______.(3)尝试应用:如图3所示是边长为4的等边三角形,其中点P为高AD上的一个动点,连接BP,将BP绕点B顺时针旋转60°得到BE,连接PE、DE、CE.①请直接写出DE的最小值.②在①的条件下求的面积.(4)拓展提高:如图4,顶点F在矩形ABCD的对角线AC上运动,连接AE..,,请求出AE的最小值.5、如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于C点,OA=2,OC=6,连接AC和BC.(1)求抛物线的解析式;(2)点D在抛物线的对称轴上,当ACD的周长最小时,点D的坐标为.6、在平面直角坐标系xoy中,抛物线y=ax2+bx+c的开口向上,且经过点A(0,).(1)求的值;(2)若此抛物线经过点B(2,﹣),且与x轴相交于点E(x1,0),F(x2,0).①求b的值(用含a的代数式表示);②当EF2的值最小时,求抛物线的解析式;(3)若a=,当0≤x≤1,抛物线上的点到x轴距离的最大值为3时,求b的值.-参考答案-一、单选题1、D【解析】【分析】根据点到圆心的距离和圆的半径之间的数量关系,即可判断点和圆的位置关系.点到圆心的距离小于圆的半径,则点在圆内;点到圆心的距离等于圆的半径,则点在圆上;点到圆心的距离大于圆的半径,则点在圆外.【详解】解:∵点A为⊙O外的一点,且⊙O的半径为3,∴线段OA的长度>3.故选:D.【点睛】此题考查了点和圆的位置关系与数量之间的联系:点到圆心的距离大于圆的半径,则点在圆外.2、C【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“脱”与“胜”是相对面,“贫”与“得”是相对面,“取”与“利”是相对面.故选:C.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.3、D【解析】【分析】利用中心投影,延长PA、PB分别交x轴于A′、B′,作PE⊥x轴于E,交AB于D,如图,证明△PAB∽△PA′B′,然后利用相似比可求出A'B'的长.【详解】解:延长PA、PB分别交x轴于A′、B′,作PE⊥x轴于E,交AB于D,如图,∵P(2,2),A(0,1),B(3,1).∴PD=1,PE=2,AB=3,∵AB//A′B′,∴△PAB∽△PA′B′,∴,即,∴A′B′=6,故选:D.【点睛】本题考查了中心投影:中心投影的光线特点是从一点出发的投射线.物体与投影面平行时的投影是放大(即位似变换)的关系.4、C【解析】【分析】根据题意可得从中任抽一张,抽到负数的可能性为2,再根据概率公式,即可求解.【详解】解:根据题意得:从中任抽一张,抽到负数的可能性为2,∴抽到负数的概率是.故选:C【点睛】本题考查了概率公式:熟练掌握随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数;P(必然事件)=1;P(不可能事件)=0是解题的关键.5、D【解析】【分析】根据必然事件、随机事件的意义进行判断即可.【详解】购买一张彩票,可能中奖,也可能不中奖,因此选项A不正确;经过有交通信号灯的路口,可能遇到红灯,也可能遇到绿灯,因此选项B不正确;射击运动员射击一次,可能命中靶心,也可能命不中靶心,因此选项C不正确;明天太阳从东方升起,必然发生,因此选项D不正确;故选:D.【点睛】本题考查必然事件、随机事件的意义和判定方法,理解必然事件、随机事件的意义是正确判断的前提.6、B【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,则“有”与“年”相对.故选:B.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.7、A【解析】【分析】直接利用随机事件、必然事件的定义分别分析得出答案.【详解】解:A、400人中有两个人的生日在同一天属于必然事件,故此选项符合题意;B、两条线段可以组成一个三角形,是不可能事件,故此选项不合题意;C、早上太阳从西方升起,这个事件为不可能事件,故此选项不合题意;D、打开电视机,有可能正在播放动画片,也有可能播放其他节目,这是随机事件,故此选项不合题意;故选:A.【点睛】此题主要考查了随机事件、必然事件的定义,解题的关键是正确把握相关定义.8、A【解析】【分析】根据二次函数的图象和性质,即可求解.【详解】解:二次函数y=-(x+2)+1的顶点坐标为(-2,1).故选:A【点睛】本题主要考查了二次函数的图象和性质,熟练掌握二次函数的图象和性质是解题的关键.9、B【解析】【分析】根据确定圆的条件、三角形的内切圆、圆心角化和弧的关系、中心对称图形的概念判断.【详解】解:A、不在同一直线上的三点确定一个圆,故错误;B、任何三角形有且只有一个内切圆,正确;C、在同圆或等圆中,相等的圆心角所对的弧相等,故错误;D、边数是偶数的正多边形一定是中心对称图形,故错误;故选:B.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10、C【解析】【分析】根据二次函数的性质得到抛物线y=-x2+2x的开口向下,对称轴为直线x=1,然后根据三个点离对称轴的远近判断函数值的大小.【详解】解:∵抛物线y=-x2+2x=-(x-1)2+1,∴抛物线y=-x2+2x的开口向下,对称轴为直线x=1,而A(-1,a)离直线x=1的距离最远,B(1,b)在直线x=1上,∴b>c>a,故选:C.【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.二、填空题1、【解析】【分析】已知抛物线解析式为顶点式,可直接写出顶点坐标.【详解】解:为抛物线的顶点式,根据顶点式的坐标特点可知,抛物线的顶点坐标为,故答案为:.【点睛】本题考查的是二次函数的性质,解题的关键是熟知二次函数的顶点式.2、【解析】【分析】将函数解析式化为顶点式,确定图象的对称轴及顶点坐标,得到3个整点的位置,由此得到不等式组,求解即可.【详解】解:∵y=ax2﹣2ax+a+2=,∴函数的对称轴为直线x=1,顶点坐标为(1,2),∴P,Q两点关于直线x=1对称,根据题意,抛物线y=ax2﹣2ax+a+2(a<0)与x轴交于P,Q两点(不包括边界)恰有3个整点,这些整点是(0,1),(1,1),(2,1),∵当x=0时,y=a+2,∴,当x=-1时,y=4a+2,∴,∴,解得,故答案为:..【点睛】此题考查了将二次函数一般式化为顶点式,二次函数的性质,一元一次不等式组的应用,根据二次函数的对称轴及顶点确定3个点的位置,由此顶点不等式组是解题的关键.3、##0.125【解析】【分析】根据题意则剩下的饺子个数为40个,其中有5个饺子包有幸运果,根据概率公式求解即可得.【详解】解:明明家过年时包了50个饺子,一家人连续吃了10个饺子都没有吃到幸运果,则剩下的饺子个数为:个,其中有5个饺子包有幸运果,在剩余的饺子中任意挑选一个饺子,正好是包有幸运果饺子的概率:,故答案为:.【点睛】题目主要考查根据概率公式求解,理解题意运用概率公式是解题关键.4、①,②或【解析】【分析】①根据P在直线x=4上画图1,作△APB的外接圆C,连接AC,BC,可知:AB=6,⊙C的半径为3,最后计算PD的长可得点P的坐标;②同理作△APB的外接圆C,计算OP和OP1的长,可得点P的坐标,注意不要丢解.【详解】解:①如图1,作△APB的外接圆,设圆心为C,连接AC,BC,∵点A与点B的坐标分别是(1,0)与(7,0),∴AB=7−1=6,∵∠APB=45°,∴∠ACB=90°,∵AC=BC,∴△ABC是等腰直角三角形,AC2+BC2=AB2∴AC=BC=3,∴PC=3,∵点P在直线x=4上,∴AD=4−1=3,∴AD=BD,∵CD⊥AB,∴CD=AD=3,∴P(4,3+3);故答案为:(4,3+3);②如图2,同理作△APB的外接圆,设圆心为C,过C作CD⊥x轴于D,作CE⊥OP于E,连接PC,P1C,在y轴上存在∠APB=∠AP1B=45°,则①知:CD=OE=3,OD=CE=4,PC=3,由勾股定理得:PE=,∴PO=3+,同理得:OP1=3−,∴P(0,3±),同理在y轴的负半轴上,存在符合条件的点P的坐标为(0,−3±),综上,点P的坐标为或.故答案为:或.【点睛】此题主要考查坐标和图形的性质,圆周角定理,勾股定理等知识,作△APB的外接圆是本题的关键.5、【解析】【分析】连接OE,首先由弧长公式求得∠EOD=60°;然后利用△BEO的性质得到线段OB的长度,易得AC与BC的长度;最后根据S阴影=S△ABC﹣S扇形OCE﹣S△OBE解答.【详解】解:如图,连接OE,∵以CD为直径的⊙与AB相切于点E,∴OE⊥BE.设∠EOD=n°,∵OD=CD=1,弧DE的长为π,∴=π.∴∠EOD=60°.∴∠B=30°,∠COE=120°.∴OB=2OE=2,BE=,AB=2AC,∵AC=AE,∴AC=BE=.∴S阴影=S△ABC﹣S扇形OCE﹣S△OBE=××3﹣﹣×1×=﹣.故答案是:﹣.【点睛】考查了切线的性质,弧长的计算和扇形面积的计算,若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.6、【解析】【分析】函数图象的对称轴为直线,图象在对称轴的右侧y随x的增大而增大,进而可得自变量x的取值范围.【详解】解:由知函数图象的对称轴为直线,图象在对称轴的右侧y随x的增大而增大∴自变量x的取值范围是故答案为:.【点睛】本题考查了二次函数的图象与性质.解题的关键在于熟练把握二次函数的图象与性质.7、【解析】【分析】连接PB,当B、C、P三点共线,且点C在PB之间时,PB最大,而OQ是△ABP的中位线,即可求解.【详解】令,则x=±4,故点B(4,0),∴OB=4设圆的半径为r,则r=2,连接PB,如图,∵点Q、O分别为AP、AB的中点,∴OQ是△ABP的中位线,当B、C、P三点共线,且点C在PB之间时,PB最大,此时OQ最大,∵C(0,3)∴OC=3在Rt△OBC中,由勾股定理得:则,故答案为3.5.【点睛】本题考查了抛物线与坐标轴的交点,三角形中位线定理,勾股定理,圆的基本性质等知识,连接PB并运用三角形中位线定理是本题的关键和难点.8、好【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“校”与“好”是对面,“内”与“足”是对面,“学”与“学”是对面,故答案为:好.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.9、【解析】【分析】根据二次函数图象平移规律“左加右减,上加下减”解答即可.【详解】解:将二次函数的图像向左平移1个单位,再向上平移1个单位,得到的新图像函数的表达式为,故答案为:.【点睛】本题考查二次函数的平移,熟练掌握二次函数图象平移规律是解答的关键.10、108【解析】【分析】圆锥的底面周长即为侧面扇形的弧长,利用弧长公式即可求得扇形的圆心角.【详解】解:由题意可得:,解得:n=108,∴圆锥侧面展开扇形的圆心角是108°,故答案为:108.【点睛】本题考查了扇形的弧长公式;用到的知识点为:圆锥的弧长等于底面周长.三、解答题1、(1)见解析(2)2.4.【解析】【分析】(1)过O作OD⊥AB交AB于点D,先根据角平分线的性质求出DO=CO,再根据切线的判定定理即可得出答案;(2)设圆O的半径为r,即OC=r,由得BC=3r,由勾股定理求得AD=,AB=3r+根据方程求解即可.(1)如图所示:过O作OD⊥AB交AB于点D.∵OC⊥BC,且BO平分∠ABC,∴OD=OC,∵OC是圆O的半径∴AB与圆O相切.(2)设圆O的半径为r,即OC=r,∵∴∴∵OC⊥BC,且OC是圆O的半径∴BC是圆O的切线,又AB是圆O的切线,∴BD=BC=3r在中,∴∴在中,∴整理得,解得,,(不合题意,舍去)∴的半径为2.4【点睛】此题主要考查了复杂作图以及切线的判定等知识,正确把握切线的判定定理是解题关键.2、(1)图见解析;(2)38【解析】【分析】(1)根据三视图的画法画出相应的图形即可;(2)根据三视图求解几何体表面积即可.(1)解:该几何体的主视图、左视图和俯视图如图所示:(2)解:该几何体的表面积为6×2+6×2+6×2+1+1=38,故答案为:38.【点睛】本题考查三视图的画法、求简单几何体的表面积,熟练掌握三视图的画法,解答的关键是注意不要遗漏中间两个正方形的面积.3、(1)5(2)见解析(3)【解析】【分析】(1)原几何体由5个棱长为的小正方体搭成的,即其体积为一个小正方体的5倍;(2)分别从正面看、从上面看该几何体,据此画出该几何体的主视图、俯视图;(3)根据几何体的形状求表面积.(1)解:这个几何体的体积为,故答案为:5;(2)图如下:(3)这个几何体的表面积为:,故答案为:.【点睛】本题考查简单组合体的三视图的画法,主视图、左视图、俯视图是分别从物体正面、左面、上面看所得到的图形,注意,看到的用实线表示,看不到的用虚线表示.4、(1)PO,垂线段最短;(2);(3)①DE的最小值是1;②△BPE的面积为;(4)AE的最小值为.【解析】【分析】(1)根据垂线段的性质即可解答;(2)由(1)知当PC⊥AB时,PC取得最小值,利用面积法即可求解;(3)①根据旋转的性质,旋转前后的图形对应线段、对应角相等,可证得△ABP≌△CBE,得到∠BCE=30°.得到点E在射线CE上,根据“垂线段最短”这一定理,当∠DEC=90°时,DE最短,据此求解即可;②利用勾股定理求得EC=,即AP=,再利用勾股定理先后求得AD、PD、BP的长,即可求解;(4)作出如图的辅助线,先判断出点E在直线GH上运动,根据“垂线段最短”这一定理,当当AE⊥GH时,AE最短,利用相似三角形的判定和性质、勾股定理以及三角形面积公式即可求解.【详解】解:(1)∵PO⊥直线m,∴从直线外一点到这条直线所作的垂线段最短.故答案为:PO,垂线段最短;(2)由(1)知当PC⊥AB时,PC取得最小值,S△ABC=ACBC=ABPC,∴PC=,即CP的最小值为,故答案为:;(3)①由旋转知∠PBE=60°,BP=BE,∴△PBE是等边三角形,∵△ABC是等边三角形,AD⊥BC,边长为4,∴AB=BC,∠ABC=60°,∠ABD=∠CBD=30°,BD=CD=2,∴∠ABP=∠CBE,∴△ABP≌△CBE(SAS),∴∠BCE=∠BAD=30°;∵点P为高AD上的一个动点,∴点E在射线CE上,根据“垂线段最短”可知,当DE⊥CE时,DE最短.∵∠BCE=30°,CD=2,∴DE=CD=1,即DE的最小值是1;②由①得CD=2,DE=1,∴CE=,∵△ABP≌△CBE,∴AP=CE,在Rt△BDA中,AB=4,BD=2,∴AD=,∴PD=AD-AP=,∴PB=,∴等边三角形△PBE的高为,∴△BPE的面积为=;(4)过点B作BH⊥AC于点H,则∠BHC=90°,∴∠HBC+∠HCB=90°,∠ACD+∠HCB=90°,∴∠HBC=∠ACD,∵∠EBF=∠ACD,∴∠HBC=∠EBF,此时点F与点C重合,点E与点H重合,∵AB=3,BC=4,∴AC=,∵S△ABC=ABBC=ACBH,∴BH=,∴AH=,取AB中点G,过点G作GI⊥AB交AC于点I,则∠BGI=90°,∴∠GBI=∠BAC,∵∠EBF=∠ACD=∠BAC,∴∠GBI=∠EBF,此时点F与点I重合,点E与点G重合,顶点F在矩形ABCD的对角线AC上运动,且,四点共圆,∴点E在直线GH上运动,根据“垂线段最短”这一定理,当AE⊥GH时,AE最短,过点H作HP⊥AB于点P,∴△APH△ABC,∴,即,∴PH=,AP=,∴PG=AG-AP=,∴GH=,∵S△AGH=AGPH=GHAE,∴AE=,∴AE的最小值为.【点睛】本题考查了相似三角形的判定和性质,全等三角

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论