




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省海门市中考数学考试彩蛋押题考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题25分)一、单选题(5小题,每小题2分,共计10分)1、如图是下列哪个立体图形的主视图()A. B.C. D.2、如图,A,B,C是正方形网格中的三个格点,则是()A.优弧 B.劣弧 C.半圆 D.无法判断3、扬帆中学有一块长,宽的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为,则可列方程为()A. B.C. D.4、已知菱形ABCD的对角线交于原点O,点A的坐标为,点B的坐标为,则点D的坐标是()A. B. C. D.5、把6张大小、厚度、颜色相同的卡片上分别画上线段、等边三角形、正方形、长方形、圆、抛物线.在看不见图形的条件下任意摸出1张,这张卡片上的图形是中心对称图形的概率是()A. B. C. D.二、多选题(5小题,每小题3分,共计15分)1、下列四个命题中正确的是(
)A.与圆有公共点的直线是该圆的切线B.垂直于圆的半径的直线是该圆的切线C.到圆心的距离等于半径的直线是该圆的切线D.过圆直径的端点,垂直于此直径的直线是该圆的切线2、如图,在中,为直径,,点D为弦的中点,点E为上任意一点,则的大小不可能是(
)A. B. C. D.3、(多选)若数使关于的一元二次方程有两个不相等的实数解,且使关于的分式方程的解为非负整数,则满足条件的的值为(
)A.1 B.3 C.5 D.74、已知,为半径是3的圆周上两点,为的中点,以线段,为邻边作菱形,顶点恰在该圆直径的三等分点上,则该菱形的边长为(
)A. B. C. D.5、二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论中正确的有()A.4a+b=0B.9a+c>﹣3bC.7a﹣3b+2c>0D.若点A(﹣3,y1)、点B(﹣,y2)、点C(7,y3)在该函数图象上,则y1<y3<y2E.若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2第Ⅱ卷(非选择题75分)三、填空题(5小题,每小题3分,共计15分)1、一个直角三角形的斜边长cm,两条直角边长的和是6cm,则这个直角三角形外接圆的半径为______cm,直角三角形的面积是________.2、已知二次函数,当x=_______时,y取得最小值.3、小亮同学在探究一元二次方程的近似解时,填好了下面的表格:根据以上信息请你确定方程的一个解的范围是________.4、如图1所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按图2所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(图1)拼出来的图形的总长度是_______(结果用含、代数式表示).5、如图,在Rt△ABC,∠B=90°,AB=BC=1,将△ABC绕着点C逆时针旋转60°,得到△MNC,那么BM=______________.四、简答题(2小题,每小题10分,共计20分)1、某校一棵大树发生一定的倾斜,该树与地面的夹角.小明测得某时大树的影子顶端在地面处,此时光线与地面的夹角;又过了一段时间,测得大树的影子顶端在地面处,此时光线与地面的夹角,若米,求该树倾斜前的高度(即的长度).(结果保留一位小数,参考数据:,,,).2、如图,∠1=∠2=∠3,试找出图中两对相似三角形,并说明为什么?五、解答题(4小题,每小题10分,共计40分)1、解下列方程.(1)x2+2x=0;(2)2x2-3x-1=0.2、关于x的一元二次方程kx2+(k+1)x+=0.(1)当k取何值时,方程有两个不相等的实数根?(2)若其根的判别式的值为3,求k的值及该方程的根.3、已知关于的方程有实根.(1)求的取值范围;(2)设方程的两个根分别是,,且,试求的值.4、安顺市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量(千克)与每千克降价(元)之间满足一次函数关系,其图象如图所示:(1)求与之间的函数关系式;(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元?-参考答案-一、单选题1、B【分析】根据主视图即从物体正面观察所得的视图求解即可.【详解】解:的主视图为,故选:B.【点睛】本题主要考查由三视图判断几何体,解题的关键是掌握由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.2、B【分析】根据三点确定一个圆,圆心的确定方法:任意两点中垂线的交点为圆心即可判断.【详解】解;如图,分别连接AB、AC、BC,取任意两条线段的中垂线相交,交点就是圆心.故选:B.【点睛】本题考查已知圆上三点求圆心,取任意两条线段中垂线交点确定圆心是解题关键.3、D【解析】【分析】根据空白区域的面积矩形空地的面积可得.【详解】设花带的宽度为,则可列方程为,故选D.【考点】本题主要考查由实际问题抽象出一元二次方程,解题的关键是根据图形得出面积的相等关系.4、A【分析】根据菱形是中心对称图形,菱形ABCD的对角线交于原点O,则点与点关于原点中心对称,根据中心对称的点的坐标特征进行求解即可【详解】解:∵菱形是中心对称图形,菱形ABCD的对角线交于原点O,∴与点关于原点中心对称,点B的坐标为,点D的坐标是故选A【点睛】本题考查了菱形的性质,求关于原点中心对称的点的坐标,掌握菱形的性质是解题的关键.5、D【分析】根据题意,判断出中心对称图形的个数,进而即可求得答案【详解】解:∵线段、等边三角形、正方形、长方形、圆、抛物线中,中心对称图形有:线段、正方形、长方形、圆,共4种,总数为6种∴在看不见图形的条件下任意摸出1张,这张卡片上的图形是中心对称图形的概率是故选D【点睛】本题考查了概率公式求概率,中心对称图形,掌握线段、等边三角形、正方形、长方形、圆、抛物线的性质是解题的关键.二、多选题1、CD【解析】【分析】要正确理解切线的定义:和圆有唯一公共点的直线是圆的切线.掌握切线的判定:①经过半径的外端,且垂直于这条半径的直线,是圆的切线;②到圆心的距离等于半径的直线是该圆的切线.【详解】解:A中,与圆有两个公共点的直线,是圆的割线,故该选项不符合题意;B中,应经过此半径的外端,故该选项不符合题意;C中,根据切线的判定方法,故该选项符合题意;D中,根据切线的判定方法,故该选项符合题意.故选:CD.【考点】本题考查了切线的判定.注意掌握切线的判定定理与切线的定义是解此题的关键.2、ACD【解析】【分析】延长ED交⊙O于N,连接OD,并延长交⊙O于M,根据已知条件知的度数是80°,根据点D为弦AC的中点得出,求出、的度数=40°,即可求出40°<的度数<80°,再得出答案即可.【详解】解:延长ED交⊙O于N,连接OD,并延长交⊙O于M,∵∠AOC=80°,∴的度数是80°,∵点D为弦AC的中点,OA=OC,∴∠AOD=∠COD,∴,即M为的中点,∴、的度数都是×80°=40°,∵>,∴40°<的度数<80°,∴20°<∠CED<40°,∴选项ACD符合题意;选项B不符合题意;故选:ACD.【考点】本题考查了圆心角、弧、弦之间的关系,圆周角定理,等腰三角形的性质等知识点,能求出的范围是解此题的关键.3、AC【解析】【分析】根据一元二次方程根的判别式及分式有意义的条件和分式方程的解为非负整数分别求出a的取值范围,即可得答案.【详解】∵关于的一元二次方程有两个不相等的实数解,∴,解得:,∵,∴,解得:,∵关于的分式方程的解为非负整数,∴且,解得:且,∴且a≠3,∵是整数,∴a=1或5,故选:AC.【考点】本题考查一元二次方程根的判别式、解分式方程及分式有意义的条件,正确得出两个不等式的解集是解题关键,注意分式的分母不为0的隐含条件,避免漏解.4、BD【解析】【分析】过B作直径,连接AC交AO与E,再根据两种情况求出BD的两个长度,再求得OD,OE,DE的值连接OD,根据勾股定理得到结论.【详解】∵点B为的中点∴BD⊥AC①如图∵点D恰再该圆直径的三等分点上∴BD==2∴OD=OB-BD=1∵四边形ABCD是菱形∴DE==1∴OE=2连接OC∵CE==∴边CD=②如下图BD==4同理可得,OD=1,OE=1,DE=2,连接OC,∵CE==∴CD=故选:BD【考点】本题考查了圆心角,弧,弦的关系,勾股定理,菱形的性质,正确地作出图形是解题的关键.5、ABE【解析】【分析】根据抛物线的对称轴为直线x=2,则有4a+b=0,可得A正确;根据二次函数的对称性得到当x=3时,函数值大于0,则9a+3b+c>0,即9a+c>﹣3b,可得B正确;由于x=﹣1时,y=0,则a﹣b+c=0,易得c=﹣5a,所以7a-3b+2c=9a,再根据抛物线开口向下得a<0,于是有7a﹣3b+2c<0,可得C错误;利用抛物线的对称性得到(﹣3,)在抛物线上,然后利用二次函数的增减性可得D错误;作出直线y=﹣3,然后依据函数图象进行判断可得E正确;综上即可得答案.【详解】A项:∵x==2,∴4a+b=0,故A正确.B项:∵抛物线与x轴的一个交点为(-1,0),对称轴为直线x=2,∴另一个交点为(5,0),∵抛物线开口向下,∴当x=3时,y>0,即9a+3b+c>0,∴9a+c>﹣3b,故B正确.C项:∵抛物线与x轴的一个交点为(﹣1,0),∴a﹣b+c=0∵b=﹣4a,∴a+4a+c=0,即c=﹣5a,∴7a﹣3b+2c=7a+12a﹣10a=9a,∵抛物线开口向下,∴a<0,∴7a﹣3b+2c<0,故C错误;D项:∵抛物线的对称轴为x=2,C(7,)在抛物线上,∴点(﹣3,)与C(7,)关于对称轴x=2对称,∵A(﹣3,)在抛物线上,∴=,∵﹣3<﹣12,在对称轴的左侧,抛物线开口向下,∴y随x的增大而增大,∴=<,故D错误.E项:方程a(x+1)(x﹣5)=0的两根为x=﹣1或x=5,过y=﹣3作x轴的平行线,直线y=﹣3与抛物线的交点的横坐标为方程的两根,∵<,抛物线与x轴交点为(-1,0),(5,0),∴依据函数图象可知:<﹣1<5<,故E正确.故答案为:ABE【考点】本题考查了二次函数图象与系数的关系:二次函数y=ax²+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b²﹣4ac>0时,抛物线与x轴有2个交点;△=b²﹣4ac=0时,抛物线与x轴有1个交点;△=b²﹣4ac<0时,抛物线与x轴没有交点.三、填空题1、4【分析】设一直角边长为x,另一直角边长为(6-x)根据勾股定理,解一元二次方程求出,根据这个直角三角形的斜边长为外接圆的直径,可求外接圆的半径为cm,利用三角形面积公式求即可.【详解】解:设一直角边长为x,另一直角边长为(6-x),∵三角形是直角三角形,∴根据勾股定理,整理得:,解得,这个直角三角形的斜边长为外接圆的直径,∴外接圆的半径为cm,三角形面积为.故答案为;.【点睛】本题考查直角三角形的外接圆,直角所对弦性质,勾股定理,一元二次方程,三角形面积,掌握以上知识是解题关键.2、1【解析】【分析】根据抛物线的顶点坐标和开口方向即可得出答案.【详解】解:,该抛物线的顶点坐标为,且开口方向向上,当时,取得最小值,故答案为:1.【考点】本题考查二次函数的最值,求二次函数最大值或最小值有三种方法:第一种可有图象直接得出,第二种是配方法,第三种是公式法.3、【解析】【分析】观察表格可知,随x的值逐渐增大,ax2+bx+c的值在3.24~3.25之间由负到正,故可判断ax2+bx+c=0时,对应的x的值在3.24<x<3.25之间.【详解】根据表格可知,ax2+bx+c=0时,对应的x的值在3.24<x<3.25之间.故答案为3.24<x<3.25.【考点】本题考查了一元二次方程的知识点,解题的关键是根据表格求出一元二次方程的近似根.4、a+8b【解析】【分析】观察可知两个拼接时,总长度为2a-(a-b),三个拼接时,总长度为3a-2(a-b),由此可得用9个拼接时的总长度为9a-8(a-b),由此即可得.【详解】观察图形可知两个拼接时,总长度为2a-(a-b),三个拼接时,总长度为3a-2(a-b),四个拼接时,总长度为4a-3(a-b),…,所以9个拼接时,总长度为9a-8(a-b)=a+8b,故答案为a+8b.【考点】本题考查了规律题——图形的变化类,通过推导得出总长度与个数间的规律是解题的关键.5、【分析】设BN与AC交于D,过M作MF⊥BA于F,过M作ME⊥BC于E,连接AM,先证明△EMC≌△FMA得ME=MF,从而可得∠CBD=45°,∠CDB=180°-∠BCA-∠CBD=90°,再在Rt△BCD、Rt△CDM中,分别求出BD和DM,即可得到答案.【详解】解:设BN与AC交于D,过M作MF⊥BA于F,过M作ME⊥BC于E,连接AM,如图:∵△ABC绕着点C逆时针旋转60°,∴∠ACM=60°,CA=CM,∴△ACM是等边三角形,∴CM=AM①,∠ACM=∠MAC=60°,∵∠B=90°,AB=BC=1,∴∠BCA=∠CAB=45°,AC==CM,∴∠BCM=∠BCA+∠ACM=105°,∠BAM=∠CAB+∠MAC=105°,∴∠ECM=∠MAF=75°②,∵MF⊥BA,ME⊥BC,∴∠E=∠F=90°③,由①②③得△EMC≌△FMA,∴ME=MF,而MF⊥BA,ME⊥BC,∴BM平分∠EBF,∴∠CBD=45°,∴∠CDB=180°-∠BCA-∠CBD=90°,Rt△BCD中,BD=BC=,Rt△CDM中,DM=CM=,∴BM=BD+DM=,故答案为:.【点睛】本题考查等腰三角形性质、等边三角形的性质及判定,解题的关键是证明∠CDB=90°.四、简答题1、该树倾斜前高度约为11.3米.【解析】【分析】过A作AH⊥BC于E,解直角三角形即可得到结论.【详解】过作于,∵,∴为等腰三角形,设,∵,∴,又在中,∵,∴,即,∴,即,又在中,∴,∴.答:该树倾斜前高度约为11.3米.【考点】本题考查的是解直角三角形的应用−仰角俯角问题,掌握锐角三角函数的定义、仰角俯角的概念是解题的关键.2、△AFD∽△EFB,△ABC∽△ADE;理由见解析.【解析】【分析】根据两个三角形的两组角对应相等,那么这两个三角形互为相似三角形证明即可.【详解】解:△AFD∽△EFB,△ABC∽△ADE.理由如下:∵∠2=∠3,∠AFD=∠EFB∴△AFD∽△EFB,∴∠B=∠D.∵∠1=∠2,∴,∴∠BAC=∠DAE,∴△ABC∽△ADE.【考点】本题考查相似三角形的判定定理,熟记判定定理,本题用到了两组角对应相等的两个三角形互为相似三角形.五、解答题1、(1)x1=-2,x2=0.(2)x1=,x2=【解析】【分析】(1)采用因式分解法即可求解;(2)直接用公式法即可求解.(1)原方程左边因式分解,得:,即有:x1=-2,x2=0;(2)∵,∴,∴,.【考点】本题考查了用因式分解法和公式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农药原药及中间体生产线项目环境影响报告书
- 个人委托制作合同范本
- 个人生意转让合同范本
- 乡村房屋建筑合同范本
- 上小学的劳务合同范本
- 高速公路维护保养管理方案
- 4人合伙开店协议合同
- 中介公章面签合同范本
- 河南省罗山县2026届数学七年级第一学期期末联考模拟试题含解析
- 建设项目竣工验收验收标准及流程
- 《小学生新能源科普》课件
- 安全员安全巡查制度模版(2篇)
- 单位调动申请书范文
- 《县委书记的榜样【知识精研精析】焦裕禄》《在民族复兴的历史丰碑上》联读课件+【知识精研】统编版高中语文选择性必修上册
- 北师大版四年级上册数学教案-总复习第3课时 图形与几何
- DB21∕T 2483-2015 草原主要蝗虫预测预报技术规范
- 树木移植施工方案
- 钢结构栈道施工方案
- 【MOOC】航天推进理论基础-西北工业大学 中国大学慕课MOOC答案
- 预防艾滋病梅毒和乙肝母婴传播项目培训课件
- Unit-2-A-great-picture(课件)-二年级英语上学期(人教PEP版2024)
评论
0/150
提交评论