




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北师大版9年级数学上册期末试题考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题24分)一、单选题(6小题,每小题2分,共计12分)1、反比例函数图象的两个分支分别位于第一、三象限,则一次函数的图象大致是(
)A. B.C. D.2、关于x的方程有两个实数根,,且,那么m的值为(
)A. B. C.或1 D.或43、在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场,设有x个队参赛,根据题意,可列方程为()A. B.C. D.4、如图,菱形ABCD中,∠ABC=60°,AB=4,E是边AD上一动点,将△CDE沿CE折叠,得到△CFE,则△BCF面积的最大值是(
)A.8 B. C.16 D.5、已知函数是反比例函数,图象在第一、三象限内,则的值是()A.3 B.-3 C. D.6、距考试还有20天的时间,为鼓舞干劲,老师要求班上每一名同学要给同组的其他同学写一份拼搏进取的留言,小明所在的小组共写了30份留言,该小组共有()A.7人 B.6人 C.5人 D.4人二、多选题(6小题,每小题2分,共计12分)1、如图,,AD与BC相交于点O,那么在下列比例式中,不正确的是(
)A. B.C. D.2、已知关于的方程,下列说法不正确的是(
)A.当时,方程无解 B.当时,方程有两个相等的实数根C.当时,方程有两个相等的实数根 D.当时,方程有两个不相等的实数根3、如图,反比例函数与一次函数的图象交于A,B两点,一次函数的图象经过点A.下列结论正确的是(
)A. B.点B的坐标为C.连接OB,则D.点C为y轴上一动点,当△ABC的周长最小时,点C的坐标是4、如图所示是△ABC位似图形的几种画法,正确的是()A. B.C. D.5、下列方程中,是一元二次方程的是(
)A. B. C. D.6、如图,在矩形、锐角三角形、正五边形、直角三角形的外边加一个宽度一样的外框,保证外框的边与原图形的对应边平行,则外框与原图一定相似的有()A. B.C. D.第Ⅱ卷(非选择题76分)三、填空题(8小题,每小题2分,共计16分)1、如图,在中,,点D是的中点,过点D作,垂足为点E,连接,若,,则________.2、如图,在平面直角坐标系中,长方形OABC的边OA在x轴上,OC在y轴上,OA=1,OC=2,对角线AC的垂直平分线交AB于点E,交AC于点D.若y轴上有一点P(不与点C重合),能使△AEP是以为AE为腰的等腰三角形,则点P的坐标为____.3、《九章算术》中记载了一种测量井深的方法.如图所示,在井口B处立一根垂直于井口的木杆,从木杆的顶端D观察水岸C,视线与井口的直径交于点E,如果测得米,米,米,那么井深为______米.4、如图,已知DC为∠ACB的平分线,DE∥BC.若AD=8,BD=10,BC=15,求EC的长=_____.5、若关于x的一元二次方程有两个不相等的实数根,则m的值可以是____.(写出一个即可)6、关于的方程有两个不相等的实数根,则的取值范围是________.7、你知道吗,对于一元二次方程,我国古代数学家还研究过其几何解法呢!以方程即为例加以说明.数学家赵爽(公元3~4世纪)在其所著的《勾股圆方图注》中记载的方法是:构造图(如下面左图)中大正方形的面积是,其中它又等于四个矩形的面积加上中间小正方形的面积,即,据此易得.那么在下面右边三个构图(矩形的顶点均落在边长为1的小正方形网格格点上)中,能够说明方程的正确构图是_____.(只填序号)8、《九章算术》是中国古代的数学专著,是“算经十书”(汉唐之间出现的十部古算书)中最重要的一种.中有下列问题:“今有邑方不知大小,各中开门.出北门八十步有木,出西门二百四十五步见木.问邑方有几何?”意思是:如图,点M、点N分别是正方形ABCD的边AD、AB的中点,,,EF过点A,且步,步,已知每步约40厘米,则正方形的边长约为__________米.四、解答题(6小题,每小题10分,共计60分)1、定义:若一个三角形最长边是最短边的2倍,我们把这样的三角形叫做“和谐三角形”.在△ABC中,点F在边AC上,D是边BC上的一点,AB=BD,点A,D关于直线l对称,且直线l经过点F.(1)如图1,求作点F;(用直尺和圆规作图保留作图痕迹,不写作法)(2)如图2,△ABC是“和谐三角形”,三边长BC,AC,AB分别a,b,c,且满足下列两个条件:a≠2b,和a2+4c2=4ac+a﹣b﹣1.①求a,b之间的等量关系;②若AE是△ABD的中线.求证:△ACE是“和谐三角形”.2、已知,AB=18,动点P从点A出发,以每秒1个单位的速度向点B运动,分别以AP、BP为边在AB的同侧作正方形.设点P的运动时间为t.(1)如图1,若两个正方形的面积之和,当时,求出的大小;(2)如图2,当取不同值时,判断直线和的位置关系,说明理由;(3)如图3,用表示出四边形的面积.3、已知:如图所示,在△ABC中,∠B=90°,AB=5cm,BC=7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动,当其中一点到达终点后,另外一点也随之停止运动.(1)如果P、Q分别从A、B同时出发,那么几秒后,△PBQ的面积等于4cm2?(2)在(1)中,△PQB的面积能否等于7cm2?请说明理由.4、定义:有一组对边相等且这一组对边所在直线互相垂直的凸四边形叫做“等垂四边形”.(1)如图①,四边形ABCD与四边形AEFG都是正方形,135°<∠AEB<180°,求证:四边形BEGD是“等垂四边形”;(2)如图②,四边形ABCD是“等垂四边形”,AD≠BC,连接BD,点E,F,G分别是AD,BD,BC的中点,连接EG,FG,EF.试判定△EFG的形状,并证明你的结论;(3)如图③,四边形ABCD是“等垂四边形”,AD=4,BC=8,请直接写出边AB长的最小值.
5、解一元二次方程(1)(2)6、已知有三条长度分别为2cm、4cm、8cm的线段,请再添一条线段.使这四条线段成比例,求所添线段的长度.-参考答案-一、单选题1、D【解析】【分析】根据题意可得,进而根据一次函数图像的性质可得的图象的大致情况.【详解】反比例函数图象的两个分支分别位于第一、三象限,∴一次函数的图象与y轴交于负半轴,且经过第一、三、四象限.观察选项只有D选项符合.故选D【考点】本题考查了反比例函数的性质,一次函数图像的性质,根据已知求得是解题的关键.2、A【解析】【分析】通过根与系数之间的关系得到,,由可求出m的值,通过方程有实数根可得到,从而得到m的取值范围,确定m的值.【详解】解:∵方程有两个实数根,,∴,,∵,∴,整理得,,解得,,,若使有实数根,则,解得,,所以,故选:A.【考点】本题考查了一元二次方程根与系数之间的关系和跟的判别式,注意使一元二次方程有实数根的条件是解题的关键.3、A【解析】【分析】共有x个队参加比赛,则每队参加(x-1)场比赛,但2队之间只有1场比赛,根据共安排36场比赛,列方程即可.【详解】解:设有x个队参赛,根据题意,可列方程为:x(x﹣1)=36,故选A.【考点】此题考查由实际问题抽象出一元二次方程,解题关键在于得到比赛总场数的等量关系.4、A【解析】【分析】由三角形底边BC是定长,所以当△BCF的高最大时,△BCF的面积最大,即当FC⊥BC时,三角形有最大面积.【详解】解:在菱形ABCD中,BC=CD=AB=4又∵将△CDE沿CE折叠,得到△CFE,∴FC=CD=4由此,△BCF的底边BC是定长,所以当△BCF的高最大时,△BCF的面积最大,即当FC⊥BC时,三角形有最大面积∴△BCF面积的最大值是故选:A.【考点】本题考查菱形的性质和折叠的性质,掌握三角形面积的计算方法和菱形的性质正确推理计算是解题关键.5、A【解析】【分析】根据反比例函数的定义建立关于m的一元二次方程,再根据反比例函数的性质解答.【详解】∵函数是反比例函数,∴m2-10=-1,解得,m2=9,∴m=±3,当m=3时,m-2>0,图象位于一、三象限;当m=-3时,m-2<0,图象位于二、四象限;故选A.【考点】本题考查了反比例函数的定义和性质,对于反比例函数y=(k≠0),(1)k>0,反比例函数图象在一、三象限;(2)k<0,反比例函数图象在第二、四象限内.6、B【解析】【分析】设小组有x人,根据题意,得x(x-1)=30,解方程即可.【详解】设小组有x人,根据题意,得x(x-1)=30,整理,得,解方程,得(舍去),故选B.【考点】本题考查了一元二次方程的应用,熟练掌握方程的应用是解题的关键.二、多选题1、ABD【解析】【分析】先判断三角形相似,再根据相似三角形的对应边成比例,则可判断A、B、C的正确性,根据基本事实,一组平行线被两条直线所截的对应线段成比例,判断D的正确性.【详解】解:∵,∴∠A=∠D,∠B=∠C,∴,∴故A不正确;故B不正确;故C正确;∵,∴即故D不正确;故选:ABD.【考点】本题考查了相似三角形的判定和相似三角形的性质以及基本事实的应用,根据性质找到对应的边成比例是解答此题的关键.2、ABD【解析】【分析】利用k的值,分别代入求出方程的根的情况即可.【详解】关于的方程,A当k=0时,x-1=0,则x=1,故此选项错误,符合题意;B当k=1时,-1=0,x=±1,方程有两个不相等的实数解,故此选项错误,符合题意;C当k=-1时,,则,,此时方程有两个相等的实数根,故此选项正确,不符合题意;D当时,根据A选项,若k=0,此时方程有一个实数根,故此选项错误,符合题意,故选:ABD.【考点】此题主要考查了一元二次方程的解,代入k的值判断方程根的情况是解题关键.3、AC【解析】【分析】联立求得的坐标,然后根据待定系数法即可求解反比例函数解析式,然后可得点B的坐标,则有根据割补法进行求解三角形面积,进而根据轴对称的性质可求解当△ABC的周长最小时点C的坐标【详解】解:联立,解得,点坐标为.将代入,得..反比例函数的表达式为;∴联立,解得或..在中,令,得.故直线与轴的交点为.如图,过、两点分别作轴的垂线,交轴于、两点,则.过点A作y轴的对称点D,连接BD,交y轴于点C,此时△ABC的周长为最小,如图所示:∴,设直线BD的解析式为,则有:,解得:,∴直线BD的解析式为,令x=0时,则有,∴;综上所述:正确的有AC选项;故选AC【考点】本题考查了反比例函数与一次函数的交点,体现了方程思想,数形结合是解题的关键.4、ABCD【解析】【分析】利用位似图形的画法:①确定位似中心;②分别连接并延长位似中心和能代表原图的关键点;③根据位似比,确定能代表所作的位似图形的关键点;④顺次连接上述各点,得到放大或缩小的图形.【详解】解:第一个图形中的位似中心为A点,第二个图形中的位似中心为BC上的一点,第三个图形中的位似中心为O点,第四个图形中的位似中心为O点.故选:ABCD.【考点】本题主要考查了位似变换,正确把握位似图形的定义是解题关键.5、ABC【解析】【分析】根据一元二次方程的定义逐个判断即可.【详解】解:A、是一元二次方程,故本选项符合题意;B、是一元二次方程,故本选项符合题意;C、是一元二次方程,故本选项符合题意;D、方程,整理得:,是一元一次方程,不是一元二次方程,故本选项不符合题意;故选:【考点】本题考查了一元二次方程的定义,能熟记一元二次方程的定义的内容是解此题的关键,注意:只含有一个未知数,并且所含未知数的项的次数最高是2的整式.6、BCD【解析】【分析】根据相似多边形的判定定理对各个选项进行分析,从而确定最后答案.【详解】解:矩形不相似,因为其对应角的度数一定相同,但对应边的比值不一定相等,不符合相似的条件,故A不符合题意;锐角三角形、正五边形、直角三角形的原图与外框相似,因为其对应角均相等,对应边均对应成比例,符合相似的条件,故B、C、D符合题意.故选BCD.【考点】此题主要考查了相似图形判定,注意边数相同、各角对应相等、各边对应成比例的两个多边形是相似多边形.三、填空题1、3【解析】【分析】根据直角三角形的性质得到AB=10,利用勾股定理求出AC,再说明DE∥AC,得到,即可求出DE.【详解】解:∵∠ACB=90°,点D为AB中点,∴AB=2CD=10,∵BC=8,∴AC==6,∵DE⊥BC,AC⊥BC,∴DE∥AC,∴,即,∴DE=3,故答案为:3.【考点】本题考查了直角三角形的性质,勾股定理,平行线分线段成比例,解题的关键是通过平行得到比例式.2、,或【解析】【分析】设AE=m,根据勾股定理求出m的值,得到点E(1,),设点P坐标为(0,y),根据勾股定理列出方程,即可得到答案.【详解】∵对角线AC的垂直平分线交AB于点E,∴AE=CE,∵OA=1,OC=2,∴AB=OC=2,BC=OA=1,∴设AE=m,则BE=2-m,CE=m,∴在Rt∆BCE中,BE2+BC2=CE2,即:(2-m)2+12=m2,解得:m=,∴E(1,),设点P坐标为(0,y),∵△AEP是以为AE为腰的等腰三角形,当AP=AE,则(1-0)2+(0-y)2=(1-1)2+(0-)2,解得:y=,当EP=AE,则(1-0)2+(-y)2=(1-1)2+(0-)2,解得:y=,∴点P的坐标为,,,故答案是:,,.【考点】本题主要考查等腰三角形的定义,勾股定理,矩形的性质,垂直平分线的性质,掌握勾股定理,列出方程,是解题的关键.3、7【解析】【分析】由题意易得,则有,然后问题可求解.【详解】解:∵,∴,∴,∵米,米,米,∴,解得米,故井深AC为7米.【考点】本题主要考查相似三角形的性质与判定,熟练掌握相似三角形的性质与判定是解题的关键.4、【解析】【分析】先由角平分线的定义及平行线的性质求得∠EDC=∠ECD,从而EC=DE;再DE∥BC,证得△ADE∽△ABC,然后根据相似三角形的性质列出比例式,求得DE的长,即为EC的长.【详解】解:∵DC为∠ACB的平分线∴∠BCD=∠ECD∵DE∥BC∴∠EDC=∠BCD∴∠EDC=∠ECD∴EC=DE∵AD=8,BD=10∴AB=18∵DE∥BC∴△ADE∽△ABC∴,∵AD=8,AB=18,BC=15∴,∴∴故答案为:【考点】本题考查了角平分线的定义、平行线的性质、等腰三角形的判定及相似三角形的判定与性质,熟练掌握相关性质与定理是解题的关键.5、0(答案不唯一)【解析】【分析】根据一元二次方程根的判别式求出的取值范围,由此即可得出答案.【详解】解:由题意得:此一元二次方程根的判别式,解得,则的值可以是0,故答案为:0(答案不唯一).【考点】本题考查了一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题关键.6、且【解析】【分析】若一元二次方程有两个不相等的实数根,则△=b2-4ac>0,建立关于k的不等式,求得k的取值范围,还要使二次项系数不为0.【详解】∵方程有两个不相等的实数根,∴解得:,又二次项系数故答案为且【考点】考查一元二次方程根的判别式,当时,方程有两个不相等的实数根.当时,方程有两个相等的实数根.当时,方程没有实数根.7、②【解析】【分析】仿造案例,构造面积是的大正方形,由它的面积为,可求出,此题得解.【详解】解:即,构造如图②中大正方形的面积是,其中它又等于四个矩形的面积加上中间小正方形的面积,即,据此易得.故答案为②.【考点】本题考查了一元二次方程的应用,仿造案例,构造出合适的大正方形是解题的关键.8、112【解析】【分析】根据题意,可知Rt△AEN∽Rt△FAN,从而可以得到对应边的比相等,从而可以求得正方形的边长.【详解】解:∵点M、点N分别是正方形ABCD的边AD、AB的中点,∴,∴AM=AN,由题意可得,∠ANF=∠EMA=90°,∠NAF+∠AFN=∠NAF+∠EAM=90°,∴∠AFN=∠EAM,∴Rt△AEM∽Rt△FAN,∴,∵AM=AN,∴,解得:AM=140,∴AD=2AM=280(步),∴(米)故答案为:112.【考点】本题考查相似三角形的应用、数学常识、正方形的性质,解答本题的关键是明确题意.利用相似三角形的性质和数形结合的思想解答.四、解答题1、(1)见解析(2)①a=b+1②见解析【解析】【分析】(1)作AD的垂直平分线,交AC于F点即可;(2)①根据题意得到a=2c,联立a2+4c2=4ac+a﹣b﹣1即可求解;②证明△ABE∽△CBA,得到,故可求解.【详解】(1)如图,点F为所求;(2)①∵△ABC是“和谐三角形”∴a=2c又a2+4c2=4ac+a﹣b﹣1.联立化简得到a=b+1;②∵E点是BD中点∴BE=由①得到AB=∴又∠ABE=∠CBA∴△ABE∽△CBA∴故△ACE是“和谐三角形”.【考点】此题主要考查相似三角形的判定与性质,解题的关键是熟知垂直平分线的做法.2、(1);(2),理由见解析;(3)【解析】【分析】(1)由题意,,,当时,,,然后求出两个正方形面积之和即可;(2)延长交于,根据正方形的性质得到AP=PC,PE=PB,∠APE=∠CPB=90°,在证的△APE≌△PBC,得到,在运用角的运算即可;(3)延长,交于点,可得四边形EDBF的面积=四边形HFBA-三角形DEH的面积-三角形ADB的面积,然后根据已知条件和正方形的性质即可解答.【详解】解:(1)由题意,,,当时,,,(2)理由如下:延长交于,如下图在正方形和正方形中,,,在和中,(全等三角形对应角相等),且,,,即.
(3)延长,交于点,,,,【考点】本题是四边形综合题目,考查了正方形面积的计算、三角形面积的计算、动点问题等知识;本题难度较大,综合性强;但认真审题和灵活应用所学知识是解答本题的关键.3、(1)1秒;(2)不可能,见解析【解析】【分析】(1)经过x秒钟,△PBQ的面积等于4cm2,根据点P从A点开始沿AB边向点B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动,表示出BP和BQ的长可列方程求解;(2)看△PBQ的面积能否等于7cm2,只需令×2x(5﹣x)=7,化简该方程后,判断该方程的△与0的关系,大于或等于0则可以,否则不可以.【详解】解:(1)设经过x秒以后△PBQ面积为4cm2,根据题意得(5﹣x)×2x=4,整理得:x2﹣5x+4=0,解得:x=1或x=4(舍去).答:1秒后△PBQ的面积等于4cm2;4、∴抛物线的解析式为y=x(2)①∵A(1,2),B(7,2),当抛物线经过点A时,a=2,当抛物线经过点B时,2=49a,∴a=,∵若G与△ABC有交点,∴≤a≤2.②由题意当a=时,y=x2,当y=8时,8=x2,∴x>0,∴x=14,∴当反比例函数y=经过点(14,8)时k的值最大,此时k=112,∴k的最大值为112【考点】本题考查二次函数综合题、待定系数法、勾股定理等知识,解题的关键是理解题意,学会利用特殊点解决问题,属于中考压轴题.2.(1)证明见解析;(2)△EFG是等腰直角三角形;证明见解析;(3)AB最小值为【解析】【分析】延长BE,DG交于点H,先证△ABE≌△ADG,得BE=DG,∠ABE=∠ADG.结合∠ABD+∠ADB=90°,知∠ABE+∠EBD+∠ADB=∠DBE+∠ADB+∠ADG=90°,即可得∠BHD=90°.从而得证;(2)延长BA,CD交于点H,由四边形ABCD是“等垂四边形”,AD≠BC知AB⊥CD,AB=CD,从而得∠HBC+∠HCB=90°,根据三个中点知EF=AB,GF=CD,EF∥AB,GF∥DC,据此得∠BGF=∠C,EFD=∠HBD,EF=GF.由∠EFG=∠EFD+∠DFG=∠ABD+∠DBC+∠FGB=∠ABD+∠DBC+∠C=∠HBC+∠HCB=90°可得答案;(3)延长BA,CD交于点H,分别取AD,BC的中点E,F.连接HE,EF,HF,由EF≥HF−HE=BC−AD=4−2=2然后结合(2)可知AB=EF≥2可得答案.【详解】解:(1)如图①,延长BE,DG交于点H,∵四边形ABCD与四边形AEFG
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 喷雾工程设备定制方案(3篇)
- 配电工程重要方案(3篇)
- 年度工程试验策划方案(3篇)
- 2025年艺术市场数字化交易平台的艺术品交易数据分析报告
- 智慧校园背景下2025校园安全文化建设与传播策略研究分析报告
- 聚焦2025:信托行业转型趋势与创新型信托产品应用报告
- 净化工程拆除方案(3篇)
- 酒店工程后期维护方案(3篇)
- 《汽车装配与检测》课件-模块十五 汽车淋雨检测与路试
- 碳排放交易员效率提升考核试卷及答案
- 2025-2026学年湘美版(2024)小学美术三年级上册《创意钟表》教学设计
- 2025交通行业工会改革计划
- 2022民用建筑暖通空调设计技术措施
- 第2章-静电场和恒定电场
- 高校新生开学动员大会教师代表发言稿范文
- 2025年心内科重症病房CCU临床带教资选拔理论试题(附答案)
- 甬温线特大铁路事故
- 用户运营基础知识培训课件
- 边境电子围栏2025年行业应用前景报告中小企业安全市场拓展
- 【英语】江苏省苏锡常镇2025届高三下学期二模试题(解析版)
- 2024年德州禹城市事业单位引进青年人才真题
评论
0/150
提交评论