中考数学总复习《 圆》自我提分评估(真题汇编)附答案详解_第1页
中考数学总复习《 圆》自我提分评估(真题汇编)附答案详解_第2页
中考数学总复习《 圆》自我提分评估(真题汇编)附答案详解_第3页
中考数学总复习《 圆》自我提分评估(真题汇编)附答案详解_第4页
中考数学总复习《 圆》自我提分评估(真题汇编)附答案详解_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

中考数学总复习《圆》自我提分评估考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、如图,点A,B的坐标分别为,点C为坐标平面内一点,,点M为线段的中点,连接,则的最大值为()A. B. C. D.2、如图,AB是半圆的直径,点D是弧AC的中点,∠ABC=50°,则∠BCD=()A.105° B.110° C.115° D.120°3、如图,拱桥可以近似地看作直径为250m的圆弧,桥拱和路面之间用数根钢索垂直相连,其正下方的路面AB长度为150m,那么这些钢索中最长的一根的长度为()A.50m B.40m C.30m D.25m4、如图所示,MN为⊙O的弦,∠N=52°,则∠MON的度数为(

)A.38° B.52° C.76° D.104°5、已知扇形的圆心角为,半径为,则弧长为(

)A. B. C. D.第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、如图,AB是⊙O的直径,C是⊙O上的点,过点C作⊙O的切线交AB的延长线于点D.若∠A=32°,则∠D=_____度.2、如图,⊙O是△ABC的外接圆,∠A=60°,BC=6,则⊙O的半径是_____.3、如图,正五边形ABCDE内接于⊙O,点F在上,则∠CFD=_____度.4、如图,在中,,,,将绕顺时针旋转后得,将线段绕点逆时针旋转后得线段,分别以,为圆心,、长为半径画弧和弧,连接,则图中阴影部分面积是________.5、如图,从一块半径为的圆形铁皮上剪出一个圆周角为120°的扇形,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为_________.三、解答题(5小题,每小题10分,共计50分)1、如图,AB是⊙O的直径,弦CD⊥AB于点E,点P⊙O上,∠1=∠C.(1)求证:CB∥PD;(2)若∠ABC=55°,求∠P的度数.2、如图,为的直径,射线交于点F,点C为劣弧的中点,过点C作,垂足为E,连接.(1)求证:是的切线;(2)若,求阴影部分的面积.3、已知的半径是.弦.求圆心到的距离;弦两端在圆上滑动,且保持,的中点在运动过程中构成什么图形,请说明理由.4、如图,为的直径,C为上一点,弦的延长线与过点C的切线互相垂直,垂足为D,,连接.(1)求的度数;(2)若,求的长.5、如图,四边形ABCD是平行四边形,点A,B,D均在圆上.请仅用无刻度的直尺分别下列要求画图.(1)在图①中,若AB是直径,CD与圆相切,画出圆心;(2)在图②中,若CB,CD均与圆相切,画出圆心.-参考答案-一、单选题1、B【解析】【分析】如图所示,取AB的中点N,连接ON,MN,根据三角形的三边关系可知OM<ON+MN,则当ON与MN共线时,OM=ON+MN最大,再根据等腰直角三角形的性质以及三角形的中位线即可解答.【详解】解:如图所示,取AB的中点N,连接ON,MN,三角形的三边关系可知OM<ON+MN,则当ON与MN共线时,OM=ON+MN最大,∵,则△ABO为等腰直角三角形,∴AB=,N为AB的中点,∴ON=,又∵M为AC的中点,∴MN为△ABC的中位线,BC=1,则MN=,∴OM=ON+MN=,∴OM的最大值为故答案选:B.【考点】本题考查了等腰直角三角形的性质以及三角形中位线的性质,解题的关键是确定当ON与MN共线时,OM=ON+MN最大.2、C【解析】【分析】连接AC,然后根据圆内接四边形的性质,可以得到∠ADC的度数,再根据点D是弧AC的中点,可以得到∠DCA的度数,直径所对的圆周角是90°,从而可以求得∠BCD的度数.【详解】解:连接AC,∵∠ABC=50°,四边形ABCD是圆内接四边形,∴∠ADC=130°,∵点D是弧AC的中点,∴CD=AC,∴∠DCA=∠DAC=25°,∵AB是直径,∴∠BCA=90°,∴∠BCD=∠BCA+∠DCA=115°,故选:C.【考点】本题考查圆周角定理、圆心角、弧、弦的关系,解答本题的关键是明确题意,利用数形结合的思想解答.3、D【解析】【分析】设圆弧的圆心为O,过O作OC⊥AB于C,交于D,连接OA,先由垂径定理得AC=BC=AB=75m,再由勾股定理求出OC=100m,然后求出CD的长即可.【详解】解:设圆弧的圆心为O,过O作OC⊥AB于C,交于D,连接OA,则OA=OD=×250=125(m),AC=BC=AB=×150=75(m),∴OC===100(m),∴CD=OD﹣OC=125﹣100=25(m),即这些钢索中最长的一根为25m,故选:D.【考点】本题考查了垂径定理和勾股定理等知识;熟练掌握垂径定理和勾股定理是解题的关键.4、C【解析】【分析】根据半径相等得到OM=ON,则∠M=∠N=52°,然后根据三角形内角和定理计算∠MON的度数.【详解】∵OM=ON,∴∠M=∠N=52°,∴∠MON=180°-2×52°=76°.故选C.【考点】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).5、D【解析】【分析】根据扇形的弧长公式计算即可.【详解】∵扇形的圆心角为30°,半径为2cm,∴弧长cm故答案为:D.【考点】本题主要考查扇形的弧长,熟记扇形的弧长公式是解题的关键.二、填空题1、26【解析】【详解】分析:连接OC,根据圆周角定理得到∠COD=2∠A,根据切线的性质计算即可.详解:连接OC,由圆周角定理得,∠COD=2∠A=64°,∵CD为⊙O的切线,∴OC⊥CD,∴∠D=90°-∠COD=26°,故答案为26.点睛:本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.2、6【解析】【分析】作直径CD,如图,连接BD,根据圆周角定理得到∠CBD=90°,∠D=60°,然后利用含30度的直角三角形三边的关系求出CD,从而得到⊙O的半径.【详解】解:作直径CD,如图,连接BD,∵CD为⊙O直径,∴∠CBD=90°,∵∠D=∠A=60°,∴BD=BC=×6=6,∴CD=2BD=12,∴OC=6,即⊙O的半径是6.故答案为6.【考点】本题主要考查圆周角的性质,解决本题的关键是要熟练掌握圆周角的性质.3、36.【解析】【分析】连接OC,OD.求出∠COD的度数,再根据圆周角定理即可解决问题.【详解】如图,连接OC,OD.∵五边形ABCDE是正五边形,∴∠COD==72°,∴∠CFD=∠COD=36°,故答案为:36.【考点】本题考查了正多边形和圆、圆周角定理等知识,解题的关键是熟练掌握基本知识.4、【解析】【分析】作DH⊥AE于H,根据勾股定理求出AB,根据阴影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积-扇形DEF的面积计算即可得到答案.【详解】解:作DH⊥AE于H,∵∠AOB=90°,OA=3,OB=2,∴,由旋转得△EOF≌△BOA,∴∠OAB=∠EFO,∵∠FEO+∠EFO=∠FEO+∠HED=90°,∴∠EFO=∠HED,∴∠HED=∠OAB,∵∠DHE=∠AOB=90°,,∴△DHE≌△BOA(AAS),∴DH=OB=1,,∴阴影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积-扇形DEF的面积,故答案为:.【考点】本题考查的是扇形面积的计算、旋转的性质、全等三角形的判定和性质,掌握扇形的面积公式和旋转的性质是解题的关键.5、【解析】【分析】连接OA,OB,证明△AOB是等边三角形,继而求得AB的长,然后利用弧长公式可以计算出的长度,再根据扇形围成圆锥底面圆的周长等于扇形的弧长即可作答.【详解】连接OA,OB,则∠BAO=∠BAC==60°,又∵OA=OB,∴△AOB是等边三角形,∴AB=OA=1,∵∠BAC=120°,∴的长为:,设圆锥底面圆的半径为r故答案为.【考点】本题主要考查了弧长公式以及扇形弧长与底面圆周长相等的知识点,借助等量关系即可算出底面圆的半径.三、解答题1、(1)证明见解析;(2)35°【解析】【详解】试题分析:(1)要证明CB∥PD,只要证明∠1=∠P;由∠1=∠C,∠P=∠C,可得∠1=∠P,即可解决问题;(2)在Rt△CEB中,求出∠C即可解决问题.试题解析:(1)如图,∵∠1=∠C,∠P=∠C,∴∠1=∠P,∴CB∥PD;(2)∵CD⊥AB,∴∠CEB=90°,∵∠CBE=55°,∴∠C=90°﹣55°=35°,∴∠P=∠C=35°.【考点】主要考查了圆周角定理、垂径定理、直角三角形的性质等知识,解题的关键是熟练掌握基本知识.2、(1)证明见解析;(2).【解析】【分析】(1)连接BF,证明BF//CE,连接OC,证明OC⊥CE即可得到结论;(2)连接OF,求出扇形FOC的面积即可得到阴影部分的面积.【详解】(1)连接,是的直径,,即,,连接,∵点C为劣弧的中点,,∵,∵OC是的半径,∴CE是的切线;(2)连接,,∵点C为劣弧的中点,,,,,∴S扇形FOC=,即阴影部分的面积为:.【考点】本题主要考查了切线的判定以及扇形面积的求法,熟练掌握切线的判定定理以及扇形面积的求法是解答此题的关键.3、(1)3;(2)在运动过程中,点运动的轨迹是以为圆心,为半径的圆【解析】【分析】(1)利用垂径定理,然后根据勾股定理即可求得弦心距OD的长;(2)根据圆的定义即可确定.【详解】解:连接,作于.就是圆心到弦的距离.在中,∵∴是弦的中点在中,,,圆心到弦的距离为.由知:是弦的中点中点在运动过程中始终保持∴据圆的定义,在运动过程中,点运动的轨迹是以为圆心,为半径的圆.【考点】考查垂径定理,作出辅助线,构造直角三角形是解题的关键.4、(1)55°;(2).【解析】【分析】(1)连接OC,如图,利用切线的性质得到OC⊥CD,则判断OC∥AE,所以∠DAC=∠OCA,然后利用∠OCA=∠OAC得到∠OAB的度数,即可求解;(2)利用(1)的结论先求得∠AEO∠EAO70°,再平行线的性质求得∠COE=70°,然后利用弧长公式求解即可.【详解】解:(1)连接OC,如图,∵CD是⊙O的切线,∴OC⊥CD,∵AE⊥CD,∴OC∥AE,∴∠DAC=∠OCA,∵OA=OC,∠CAD=35°,∴∠OAC=∠OCA=∠CAD=35°,∵AB为⊙O的直径,∴∠ACB=90°,∴∠B=90°-∠OAC=55°;(2)连接OE,OC,如图,由(1)得∠EAO=∠OAC+∠CAD=70°,∵OA=OE,∴∠AEO∠EAO70°,∵OC∥AE,∴∠COE=∠AEO=70°,∴AB=2,则OC=OE=1,∴的长为.【考点】本题考查了切线的性质,圆周角定理,弧长公式等知识,解题的关键是学会添加常用辅助线.5、(1)见解析;(2)见解析【解析】【分析】(1)延长CB交圆于一点,把这点与点D连接,与AB交点即为圆心;(2)连接AC、BD交于点G,AC交圆于点E,射线DE交BC于F,射线FG交DA于H,连接BH交AC于O即可.【详解】(1)如图1所示,延长CB交

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论