重难点解析山西太原市育英中学7年级数学下册第四章三角形定向练习试题(详解)_第1页
重难点解析山西太原市育英中学7年级数学下册第四章三角形定向练习试题(详解)_第2页
重难点解析山西太原市育英中学7年级数学下册第四章三角形定向练习试题(详解)_第3页
重难点解析山西太原市育英中学7年级数学下册第四章三角形定向练习试题(详解)_第4页
重难点解析山西太原市育英中学7年级数学下册第四章三角形定向练习试题(详解)_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西太原市育英中学7年级数学下册第四章三角形定向练习考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、如图,在中,已知点,,分别为,,的中点,且,则的面积是()A. B.1 C.5 D.2、如图,工人师傅在安装木制门框时,为防止变形,常常钉上两条斜拉的木条,这样做的数学依据是()A.两点确定一条直线B.两点之间,线段最短C.三角形具有稳定性D.三角形的任意两边之和大于第三边3、下列三角形与下图全等的三角形是()A. B.C. D.4、如图,为了估计一池塘岸边两点A,B之间的距离,小颖同学在池塘一侧选取了一点P,测得,那么点A与点B之间的距离不可能是()A. B. C. D.5、以下列各组线段为边,能组成三角形的是()A.3cm,3cm,6cm B.2cm,5cm,8cmC.25cm,24cm,7cm D.1cm,2cm,3cm6、如图,点O在AD上,∠A=∠C,∠AOC=∠BOD,AB=CD,AD=8,OB=3,则OC的长为()A.3 B.4 C.5 D.67、已知三角形的两边长分别是3cm和7cm,则下列长度的线段中能作为第三边的是()A.3cm B.4cm C.7cm D.10cm8、如图,ABC≌DEF,点B、E、C、F在同一直线上,若BC=7,EC=4,则CF的长是()A.2 B.3 C.4 D.79、如图,在和中,已知,在不添加任何辅助线的前提下,要使,只需再添加的一个条件不可以是()A. B. C. D.10、如图,E为线段BC上一点,∠ABE=∠AED=∠ECD=90°,AE=ED,BC=20,AB=8,则BE的长度为()A.12 B.10 C.8 D.6第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题2分,共计20分)1、如图,两根旗杆CA,DB相距20米,且CA⊥AB,DB⊥AB,某人从旗杆DB的底部B点沿BA走向旗杆CA底部A点.一段时间后到达点M,此时他分别仰望旗杆的顶点C和D,两次视线的夹角∠CMD=90°,且CM=DM.已知旗杆BD的高为12米,该人的运动速度为每秒2米,则这个人从点B到点M所用时间是_____秒.2、如图,△ABC中,BD平分∠ABC,AD垂直于BD,△BCD的面积为58,△ADC的面积为30,则△ABD的面积等于______.3、如图,在中,已知点,,分别为,,的中点,且,则阴影部分的面积______.4、如图,AC=DB,AO=DO,CD=100,则A,B两点间的距离为_______.5、等腰三角形的一条边长为4cm,另一条边长为6cm,则它的周长是________.6、如图,在中,,一条线段,P,Q两点分别在线段和的垂线上移动,若以A、B、C为顶点的三角形与以A、P、Q为顶点的三角形全等,则的长为_________.7、如图,为△ABC的中线,为△的中线,为△的中线,……按此规律,为△的中线.若△ABC的面积为8,则△的面积为_______________.8、两角和它们的夹边分别相等的两个三角形全等(可以简写成_____).9、如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D,己知DE=4,AD=6,则BE的长为___.10、如图,AD是BC边上的中线,AB=5cm,AD=4cm,△ABD的周长是12cm,则BC的长是____cm.三、解答题(6小题,每小题10分,共计60分)1、如图所示,在△ABC中,AD⊥BC于D,CE⊥AB于E,AD与CE交于点F,且AD=CD.(1)求证:△ABD≌△CFD;(2)已知BC=9,AD=6,求AF的长.2、已知∠ACD=90°,MN是过点A的直线,AC=DC,且DB⊥MN于点B,如图易证BD+ABCB,过程如下:解:过点C作CE⊥CB于点C,与MN交于点E∵∠ACB+∠BCD=90°,∠ACB+∠ACE=90°,∴∠BCD=∠ACE.∵DB⊥MN,∴∠ABC+∠CBD=90°,CE⊥CB,∴∠ABC+∠CEA=90°,∴∠CBD=∠CEA.又∵AC=DC,∴△ACE≌△DCB(AAS),∴AE=DB,CE=CB,∴△ECB为等腰直角三角形,∴BECB.又∵BE=AE+AB,∴BE=BD+AB,∴BD+ABCB.(1)当MN绕A旋转到如图(2)位置时,BD、AB、CB满足什么样关系式,请写出你的猜想,并给予证明.(2)当MN绕A旋转到如图(3)位置时,BD、AB、CB满足什么样关系式,请直接写出你的结论.3、如图,点B,F,C,E在一条直线上,AB=DE,AC=DF,BF=EC.AB和DE的位置关系是什么?请说明你的理由.4、已知:如图,,,求证:5、已知是的三边长.(1)若满足,,试判断的形状;(2)化简:6、如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E.(1)求证:BE=CD;(2)F为AD上一点,DF=CD,连接BF,若AD=5,BE=2,求△BDG的面积-参考答案-一、单选题1、B【分析】根据三角形面积公式由点为的中点得到,同理得到,则,然后再由点为的中点得到.【详解】解:点为的中点,,点为的中点,,,点为的中点,.故选:.【点睛】本题考查了三角形的中线与面积的关系,解题的关键是掌握是三角形的中线把三角形的面积平均分成两半.2、C【分析】根据三角形具有稳定性进行求解即可.【详解】解:工人师傅在安装木制门框时,为防止变形,常常钉上两条斜拉的木条,这样做的数学依据是三角形具有稳定性,故选C.【点睛】本题主要考查了三角形的稳定性,熟知三角形具有稳定性是解题的关键.3、C【分析】根据已知的三角形求第三个内角的度数,由全等三角形的判定定理即可得出答案.【详解】由题可知,第三个内角的度数为,A.只有两边,故不能判断三角形全等,故此选项错误;B.两边夹的角度数不相等,故两三角形不全等,故此选项错误;C.两边相等且夹角相等,故能判断两三角形全等,故此选项正确;D.两边夹的角度数不相等,故两三角形不全等,故此选项错误.故选:C.【点睛】本题考查全等三角形的判定,掌握全等三角形的判定定理是解题的关键.4、D【分析】首先根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边,求出AB的取值范围,然后再判断各选项是否正确.【详解】解:∵PA=100m,PB=90m,∴根据三角形的三边关系得到:,∴,∴点A与点B之间的距离不可能是20m,故选A.【点睛】本题主要考查了三角形的三边关系,掌握三角形两边只差小于第三边、两边之和大于第三边是解题的关键.5、C【分析】根据三角形三边关系求解即可.【详解】解:A、∵,∴3cm,3cm,6cm不能组成三角形,故选项错误,不符合题意;B、∵,∴2cm,5cm,8cm不能组成三角形,故选项错误,不符合题意;C、∵,∴25cm,24cm,7cm能组成三角形,故选项正确,符合题意;D、∵,∴1cm,2cm,3cm不能组成三角形,故选项错误,不符合题意.故选:C.【点睛】此题考查了三角形三边关系,解题的关键是熟练掌握三角形三边关系.三角形两边之和大于第三边,两边之差小于第三边.6、C【分析】证明△AOB≌△COD推出OB=OD,OA=OC,即可解决问题.【详解】解:∵∠AOC=∠BOD,∴∠AOC+∠COB=∠BOD+∠COB,即∠AOB=∠COD,∵∠A=∠C,CD=AB,∴△AOB≌△COD(AAS),∴OA=OC,OB=OD,∵AD=8,OB=3,∴OC=AO=AD-OD=AD-OB=5.故选C.【点睛】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题.7、C【分析】设三角形第三边的长为xcm,再根据三角形的三边关系求出x的取值范围,找出符合条件的x的值即可.【详解】解:设三角形的第三边是xcm.则7-3<x<7+3.即4<x<10,四个选项中,只有选项C符合题意,故选:C.【点睛】本题主要考查了三角形三边关系的应用.此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.8、B【分析】根据全等三角形的性质可得,根据即可求得答案.【详解】解:ABC≌DEF,点B、E、C、F在同一直线上,BC=7,EC=4,故选B【点睛】本题考查了全等三角形的性质,掌握全等三角形的性质是解题的关键.9、B【分析】添加AC=AD,利用SAS即可得到两三角形全等;添加∠D=∠C,利用AAS即可得到两三角形全等,添加∠CBE=∠DBE,利用ASA即可得到两三角形全等.【详解】解:A、添加AC=AD,利用SAS即可得到两三角形全等,故此选项不符合题意;B、添加BC=BD,不能判定两三角形全等,故此选项符合题意;C、添加∠D=∠C,利用AAS即可得到两三角形全等,故此选项不符合题意;D、添加∠CBE=∠DBE,利用ASA即可得到两三角形全等,故此选项不符合题意;故选:B.【点睛】此题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解本题的关键.10、A【分析】利用角相等和边相等证明,利用全等三角形的性质以及边的关系,即可求出BE的长度.【详解】解:由题意可知:∠ABE=∠AED=∠ECD=90°,,,,在和中,,,,故选:A.【点睛】本题主要是考查了全等三角形的判定和性质,熟练通过已知条件证明三角形全等,利用全等性质及边的关系,来求解未知边的长度,这是解决本题的主要思路.二、填空题1、4【分析】先说明,再利用证明,然后根据全等三角形的性质可得米,再根据线段的和差求得BM的长,最后利用时间=路程÷速度计算即可.【详解】解:∵,∴,又∵,∴,∴,在和中,,∴,∴米,(米),∵该人的运动速度,他到达点M时,运动时间为s.故答案为:4.【点睛】本题主要考查了全等三角形的判定与性质,根据题意证得是解答本题的关键.2、28【分析】延长交于,由证明,得出,得出,进而得出,即可得出结果.【详解】如图所示,延长交于,∵平分,,∴,,在和中,,∴,∴,∴,,∴.故答案为:28.【点睛】此题考查全等三角形的判定与性质,三角形面积的计算,证明三角形全等得出是解题关键.3、【分析】根据三角形中线性质,平分三角形面积,先利用AD为△ABC中线可得S△ABD=S△ACD,根据E为AD中点,,根据BF为△BEC中线,即可.【详解】解:∵AD为△ABC中线∴S△ABD=S△ACD,又∵E为AD中点,故,∴,∵BF为△BEC中线,∴cm2.故答案为:1cm2.【点拨】本题考查了三角形中线的性质,牢固掌握并会运用是解题关键.4、100【分析】由,,可得,从而可得,得出,根据,则,两点间的距离即可求解.【详解】解:∵,,∴,又∵,∴在与中,,∴,∴,∵,∴,两点间的距离为100.故答案为:100.【点睛】本题考查了全等三角形的判定及性质,解决本题的关键是判定与全等.5、16cm或14cm【分析】根据题意分腰为6cm和底为6cm两种情况,分别求出即可.【详解】解:①当腰为6cm时,它的周长为6+6+4=16(cm);②当底为6cm时,它的周长为6+4+4=14(cm);故答案为:16cm或14cm.【点睛】本题考查了等腰三角形的性质的应用,注意:等腰三角形的两腰相等,注意分类讨论.6、6cm或12cm【分析】先根据题意得到∠BCA=∠PAQ=90°,则以A、B、C为顶点的三角形与以A、P、Q为顶点的三角形全等,只有△ACB≌△QAP和△ACB≌△PAQ两种情况,由此利用全等三角形的性质求解即可.【详解】解:∵AX是AC的垂线,∴∠BCA=∠PAQ=90°,∴以A、B、C为顶点的三角形与以A、P、Q为顶点的三角形全等,只有△ACB≌△QAP和△ACB≌△PAQ两种情况,当△ACB≌△QAP,∴;当△ACB≌△PAQ,∴,故答案为:6cm或12cm.【点睛】本题主要考查了全等三角形的性质,熟知全等三角形的性质是解题的关键.7、【分析】根据三角形的中线性质,可得△的面积=,△的面积=,……,进而即可得到答案.【详解】由题意得:△的面积=,△的面积=,……,△的面积==.故答案是:.【点睛】本题主要考查三角形的中线的性质,掌握三角形的中线把三角形的面积平分,是解题的关键.8、角边角或【分析】根据全等三角形的判定定理得出即可.【详解】解答:解:两角和它们的夹边分别相等的两个三角形全等,简写成角边角或ASA,故答案为:角边角或ASA.【点睛】本题考查了全等三角形的判定定理,掌握全等三角形的判定定理是解题的关键.9、2【分析】根据AAS证明△ACD≌△CBE,再利用其性质解答即可.【详解】解:∵∠ACB=90°,∴∠BCE+∠ACD=90°,∵AD⊥CE,BE⊥CE,∴∠ADC=∠CEB=90°,∠CAD+∠ACD=90°,∴∠BCE=∠CAD,在△ACD与△CBE中,,∴△ACD≌△CBE,∴BE=CD,CE=AD,∴BE=CD=CE−DE=AD−DE=6−4=2.故答案为:2.【点睛】本题考查三角形全等的判定和性质,要根据AAS证明△ACD≌△CBE是解题的关键.10、6【分析】根据AD是BC边上的中线,得出为的中点,可得,根据条件可求出.【详解】解:AD是BC边上的中线,为的中点,,,△ABD的周长是12cm,,,故答案是:6.【点睛】本题考查了三角形的中线,解题的关键利用中线的性质得出为的中点.三、解答题1、(1)证明见解析;(2)AF=3【分析】(1)利用同角的余角相等,证明∠BAD=∠FCD,利用ASA证明即可;(2)利用全等三角形的性质,得BD=DF,结合BD=BC﹣CD,AF=AD﹣DF计算即可.【详解】(1)证明:∵AD⊥BC,CE⊥AB,∴∠ADB=∠CDF=∠CEB=90°,∴∠BAD+∠B=∠FCD+∠B=90°,∴∠BAD=∠FCD,在△ABD和CFD中,,∴△ABD≌△CFD(ASA);(2)解:∵△ABD≌△CFD,∴BD=DF,∵BC=9,AD=DC=6,∴BD=BC﹣CD=3,∴AF=AD﹣DF=6﹣3=3.【点睛】本题考查了ASA证明三角形全等,全等三角形的性质,熟练掌握三角形全等的判定和性质是解题的关键.2、(1)AB-BD=CB,证明见解析.(2)BD-AB=CB,证明见解析.【分析】(1)仿照图(1)的解题过程即可解答.过点C作CE⊥CB于点C,与MN交于点E,根据同角(等角)的余角相等可证∠BCD=∠ACE及∠CAE=∠D,由ASA可证△ACE≌△DCB,然后由全等三角形的对应边相等可得:AE=DB,CE=CB,从而确定△ECB为等腰直角三角形,由勾股定理可得:BE=CB,由BE=AB-AE,可得BE=AB-BD,即AB-BD=CB;(2)解题思路同(1),过点C作CE⊥CB于点C,与MN交于点E,根据等角的余角相等及等式的性质可证∠BCD=∠ACE及∠CAE=∠D,由ASA可证△ACE≌△DCB,然后由全等三角形的对应边相等可得:AE=DB,CE=CB,从而确定△ECB为等腰直角三角形,由勾股定理可得:BE=CB,由BE=AE-AB,可得BE=BD-AB,即BD-AB=CB.【详解】解:(1)AB-BD=CB.证明:如图(2)过点C作CE⊥CB于点C,与MN交于点E,∵∠ACD=90°,∠ECB=90°,∴∠ACE=90°-∠DCE,∠BCD=90°-∠ECD,∴∠BCD=∠ACE.∵DB⊥MN,∴∠CAE=90°-∠AFC,∠D=90°-∠BFD,∵∠AFC=∠BFD,∴∠CAE=∠D,在△ACE和△DCB中,∴△ACE≌△DCB(ASA),∴AE=DB,CE=CB,∴△ECB为等腰直角三角形,∴BE=CB.又∵BE=AB-AE,∴BE=AB-BD,∴AB-BD=CB.(2)BD-AB=CB.如图(3)过点C作CE⊥CB于点C,与MN交于点E,∵∠ACD=90°,∠BCE=90°,∴∠ACE=90°+∠ACB,∠BCD=90°+∠ACB,∴∠BCD=∠ACE.∵DB⊥MN,∴∠CAE=90°-∠AFC,∠D=90°-∠BFD,∵∠AFC=∠BFD,∴∠CAE=∠D,在△ACE和△DCB中,∴△ACE≌△DCB(ASA),∴AE=DB,CE=CB,∴△ECB为等腰直角三角形,∴BE=CB.又∵BE=AE-AB,∴BE=BD-AB,∴BD-AB=CB.【点睛】本题考查了三角形全等的判定和性质,等腰直角三角形的判定和性质等.注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的性质是全等三角形的对应边相等,对应角相等.3、AB∥DE,理由见解析.【分析】先求出BC=EF,再根据“边边边”证明△ABC与△DEF全等,根据全等三角形对应角相等可得∠B=∠E,然后根据内错角相等,两直线平行即可得证.【详解】解:∵BF=EC,∴BF+FC=EC+CF,即BC=EF,在△ABC与△DEF中,,∴△ABC≌△DEF(SSS),∴∠B=∠E(全等三角形对应角相等),∴AB∥DE.【点睛】本题考查了全等三角形的判定与性质,平行线的判定,求出BC=EF

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论