




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省昆山市中考数学真题分类(勾股定理)汇编定向测评考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题14分)一、单选题(7小题,每小题2分,共计14分)1、观察“赵爽弦图”(如图),若图中四个全等的直角三角形的两直角边分别为a,b,,根据图中图形面积之间的关系及勾股定理,可直接得到等式(
)A. B.C. D.2、下面图形能够验证勾股定理的有()个A.4个 B.3个 C.2个 D.1个3、在直角三角形中,若勾为3,股为4,则弦为()A.5 B.6 C.7 D.84、如图所示,圆柱的高AB=3,底面直径BC=3,现在有一只蚂蚁想要从A处沿圆柱表面爬到对角C处捕食,则它爬行的最短距离是()A. B. C. D.5、如图,中,,将折叠,使点C与的中点D重合,折痕交于点M,交于点N,则线段的长为(
).A. B. C.3 D.6、如图,长方体的底面边长分别为2cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈达到点B,那么所用细线最短需要(
)A.11cm B.2cm C.(8+2)cm D.(7+3)cm7、如图,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,点D是BC上一动点,连接AD,将△ACD沿AD折叠,点C落在点E处,连接DE交AB于点F,当∠DEB是直角时,DF的长为(
).A.5 B.3 C. D.第Ⅱ卷(非选择题86分)二、填空题(8小题,每小题2分,共计16分)1、如图,一架长5米的梯子A1B1斜靠在墙A1C上,B1到墙底端C的距离为3米,此时梯子的高度达不到工作要求,因此把梯子的B1端向墙的方向移动了1.6米到B处,此时梯子的高度达到工作要求,那么梯子的A1端向上移动了_____米.2、云顶滑雪公园是北京2022年冬奥会7个雪上竞赛场馆中唯一利用现有雪场改造而成的.下图左右两幅图分别是公园内云顶滑雪场U型池的实景图和示意图,该场地可以看作是从一个长方体中挖去了半个圆柱而成,它的横截面图中半圆的半径为,其边缘,点E在上,.一名滑雪爱好者从点A滑到点E,他滑行的最短路线长为_________m.3、如图,Rt△ABC中,∠C=90°,在△ABC外取点D,E,使AD=AB,AE=AC,且α+β=∠B,连结DE.若AB=4,AC=3,则DE=__.4、在△ABC中,∠C=90°,AB=10,AC=8,则BC的长为_____.5、图①所示的正方体木块棱长为6cm,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图②的几何体,一只蚂蚁沿着图②的几何体表面从顶点A爬行到顶点B的最短距离为_____cm.6、有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,这根芦苇的长度为_____尺.7、如图,铁路MN和公路PQ在O点处交汇,公路PQ上A处点距离O点240米,距离MN120米,如果火车行驶时,周围两百米以内会受到噪音的影响,那么火车在铁路MN上沿ON方向,以144千米/时的速度行驶时,A处受噪音影响的时间是_______s8、如图,在△ABC中,∠ACB=90°,CD⊥AB于点D.E为线段BD上一点,连结CE,将边BC沿CE折叠,使点B的对称点B'落在CD的延长线上.若AB=10,BC=8,则△ACE的面积为________.三、解答题(7小题,每小题10分,共计70分)1、如图,已知等腰△ABC的底边BC=10cm,D是腰AC上一点,且CD=6cm,BD=8cm.(1)判断△BCD的形状,并说明理由;(2)求△ABC的周长.2、如图所示的一块地,,,,,,求这块地的面积.3、如图,高速公路上有A,B两点相距10km,C,D为两村庄,已知DA=4km,CB=6km,DA⊥AB于点A,CB⊥AB于B,现要在AB上建一个服务站E,使得C,D两村庄到E站的距离相等,求BE的长.4、《算法统宗》是中国古代数学名著,作者是我国明代数学家程大位.在《算法统宗》中有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几.”(注:1步=5尺)译文:“有一架秋千,当它静止时,踏板离地1尺,将它往前推送10尺(水平距离)时,秋千的踏板就和人一样高,这个人的身高为5尺,秋千的绳索始终拉得很直,问绳索有多长.”5、如图,在△ABC中,∠C=90°,M是BC的中点,MD⊥AB于D,求证:.6、台风是一种自然灾害,它以台风中心为圆心在周围上千米的范围内形成极端气候,有极强的破坏力,有一台风中心沿东西方向AB由点A行驶向点B,已知点C为一海港,且点C与直线AB上两点A、B的距离分别为300km和400km,又AB=500km,以台风中心为圆心周围250km以内为受影响区域.(1)海港C会受台风影响吗?为什么?(2)若台风的速度为20km/h,台风影响该海港持续的时间有多长?7、如图,中,,,是边上一点,且,若.求的长.-参考答案-一、单选题1、C【解析】【分析】根据小正方形的面积等于大正方形的面积减去4个直角三角形的面积可得问题的答案.【详解】标记如下:∵,∴(a﹣b)2=a2+b2﹣4=a2﹣2ab+b2.故选:C.【考点】此题考查的是利用勾股定理的证明,可以完全平方公式进行证明,掌握面积差得算式是解决此题关键.2、A【解析】【分析】分别计算图形的面积进行证明即可.【详解】解:A、由可得,故该项的图形能够验证勾股定理;B、由可得,故该项的图形能够验证勾股定理;C、由可得,故该项的图形能够验证勾股定理;D、由可得,故该项的图形能够验证勾股定理;故选:A.【考点】此题考查了图形与勾股定理的推导,熟记勾股定理的计算公式及各种图形面积的计算方法是解题的关键.3、A【解析】【分析】直接根据勾股定理求解即可.【详解】解:∵在直角三角形中,勾为3,股为4,∴弦为,故选A.【考点】本题考查了勾股定理,熟练掌握勾股定理是解题的关键.4、C【解析】【分析】要求最短路径,首先要把圆柱的侧面展开,利用两点之间线段最短,然后利用勾股定理即可求解.【详解】解:把圆柱侧面展开,展开图如图所示,点A、C之间的最短距离为线段AC的长.在Rt△ADC中,∠ADC=90°,CD=AB=3,AD为底面半圆弧长,AD=π,∴AC=,故选C.【考点】本题考查了平面展开-最短路径问题,解题的关键是会将圆柱的侧面展开,并利用勾股定理解答.5、D【解析】【分析】由折叠的性质可得DN=CN,根据勾股定理可求DN的长,即可得出结果.【详解】解:∵D是AB中点,AB=4,∴AD=BD=2,∵将△ABC折叠,使点C与AB的中点D重合,∴DN=CN,∴BN=BC-CN=6-DN,在Rt△DBN中,DN2=BN2+DB2,∴DN2=(6-DN)2+4,∴DN=,∴CN=DN=,故选:D.【考点】本题考查了翻折变换、折叠的性质、勾股定理,熟练运用折叠的性质是本题的关键.6、B【解析】【详解】要求所用细线的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.解:将长方体展开,连接AB′,则AB′最短.∵AA′=3+2+3+2=10cm,A′B′=6cm,∴AB′=cm.故选B..7、C【解析】【分析】如图,由题意知,,,,可知三点共线,与重合,在中,由勾股定理得,求的值,设,,在中,由勾股定理得,计算求解即可.【详解】解:如图,∵是直角∴由题意知,,∴∴三点共线∴与重合在中,由勾股定理得设,在中,由勾股定理得即解得∴的长为故选C.【考点】本题考查了折叠的性质,勾股定理等知识.解题的关键在于明确三点共线,与重合.二、填空题1、0.8【解析】【分析】梯子的长是不变的,只要利用勾股定理解出梯子滑动前和滑动后的所构成的两直角三角形,分别得出AO,A1O的长即可.【详解】解:在Rt△ABO中,根据勾股定理知,A1O==4(m),在Rt△ABO中,由题意可得:BO=1.4(m),根据勾股定理知,AO==4.8(m),所以AA1=AO-A1O=0.8(米).故答案为0.8.【考点】本题考查勾股定理的应用,解题关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.2、【解析】【分析】根据题意可得,AD=12m,DE=CD﹣CE=24﹣4=20m,线段AE即为滑行的最短路线长.在Rt△ADE中,根据勾股定理即可求出滑行的最短路线长.【详解】解:如图,根据题意可知:AD==12,DE=CD﹣CE=24﹣4=20,线段AE即为滑行的最短路线长.在Tt△ADE中,根据勾股定理,得AE=(m).故答案为:【考点】本题考查了平面展开﹣最短路径问题,解决本题的关键是掌握圆柱的侧面展开图是矩形,利用勾股定理求最短距离.3、5【解析】【分析】根据角度转换,得到三角形ADE是直角三角形,然后运用勾股定理计算出DE的长.【详解】∵∠B+∠C+∠BAC=180°,∠C=90°,∴∠B+∠BAC=90°.∵α+β=∠B,∴∠DAE=α+β+∠BAC==∠B+∠BAC=90°.∴△ADE是直角三角形.∴DE===5.【考点】本题主要考查到运用勾股定理求长度,说明三角形ADE是直角三角形是解题的关键.4、6【解析】【分析】根据勾股定理求解即可.【详解】∵Rt△ABC中,∠C=90°,AB=10,AC=8,∴BC===6故答案为:6.【考点】本题考查勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.5、(3+3).【解析】【分析】要求蚂蚁爬行的最短距离,需将图②的几何体表面展开,进而根据“两点之间线段最短”得出结果.【详解】如图所示:△BCD是等腰直角三角形,△ACD是等边三角形,在Rt△BCD中,CD==6cm,∴BE=CD=3cm,在Rt△ACE中,AE==3cm,∴从顶点A爬行到顶点B的最短距离为(3+3)cm.故答案为(3+3).【考点】本题考查了平面展开-最短路径问题,关键是把图②的几何体表面展开成平面图形,根据等腰直角三角形的性质和等边三角形的性质解题.6、13【解析】【分析】找到题中的直角三角形,设水深为x尺,根据勾股定理解答.【详解】解:设水深为尺,则芦苇长为尺,根据勾股定理得:,解得:,芦苇的长度(尺,答:芦苇长13尺.故答案为:13.【考点】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.7、8【解析】【分析】过点A作AC⊥ON,根据题意可知AC的长与200米相比较,发现受到影响,然后过点A作AD=AB=200米,求出BD的长即可得出居民楼受噪音影响的时间.【详解】解:如图:过点A作AC⊥ON,AB=AD=200米,∵公路PQ上A处点距离O点240米,距离MN120米,∴AC=120米,当火车到B点时对A处产生噪音影响,此时AB=200米,∵AB=200米,AC=120米,∴由勾股定理得:BC=160米,CD=160米,即BD=320米,∵144千米/小时=40米/秒,∴影响时间应是:320÷40=8秒.故答案为:8.【考点】本题考查勾股定理的应用.根据题意构建直角三角形是解题关键.8、【解析】【分析】求出AC=6,面积法求出CD=,在Rt△BCD中,用勾股定理得BD=,即可得B'D=B'C-CD=,设BE=B'E=x,则DE=BD-BE=-x,在Rt△B'DE中,用勾股定理可得BE=4,即可得到答案.【详解】解:∵∠ACB=90°,AB=10,BC=8,∴AC==6,∵CD⊥AB,∴2S△ABC=AB•CD=AC•BC,∴CD==,在Rt△BCD中,BD=,∵将边BC沿CE折叠,使点B的对称点B'落在CD的延长线上,∴B'C=BC=8,BE=B'E,∴B'D=B'C-CD=8-=,设BE=B'E=x,则DE=BD-BE=-x,在Rt△B'DE中,B'D2+DE2=B'E2,∴()2+(-x)2=x2,解得x=4,∴BE=4,∴AE=AB-BE=6,∴△ACE的面积为AE•CD=×6×=,故答案为:.【考点】本题考查直角三角形中的折叠问题,解题的关键是掌握折叠的性质,熟练运用勾股定理.三、解答题1、(1)△BDC为直角三角形,理由见解析;(2)△ABC的周长为=cm.【解析】【分析】(1)由BC=10cm,CD=8cm,BD=6cm,知道BC2=BD2+CD2,所以△BDC为直角三角形;(2)由此可求出AC的长,周长即可求出.(1)解:△BDC为直角三角形,理由如下,∵BC=10cm,CD=8cm,BD=6cm,而102=62+82,∴BC2=BD2+CD2.∴△BDC为直角三角形;(2)解:设AB=xcm,∵等腰△ABC,∴AB=AC=x,则AD=x-6,∵AB2=AD2+BD2,即x2=(x-6)2+82,∴x=,∴△ABC的周长=2AB+BC=(cm).【考点】本题考查了勾股定理的逆定理,关键是根据等腰三角形的性质、勾股定理以及逆定理的应用解答.2、384【解析】【分析】连接,勾股定理求得,勾股定理的逆定理证明为直角三角形,进而根据三角形的面积公式计算和的面积之差即可.【详解】解:连接,在直角中,,,由,解得,在中,,,,∵,∴,∴为直角三角形,要求这块地的面积,求和的面积之差即可,,答:这块地的面积为.【考点】本题考查了勾股定理及其逆定理,掌握勾股定理和勾股定理的逆定理是解题的关键.3、4km【解析】【分析】根据题意设出BE的长为xkm,再由勾股定理列出方程求解即可.【详解】解:设BE=xkm,则AE=(10﹣x)km,由勾股定理得:在Rt△ADE中,DE2=AD2+AE2=42+(10﹣x)2,在Rt△BCE中,CE2=BC2+BE2=62+x2,由题意可知:DE=CE,所以:62+x2=42+(10﹣x)2,解得:x=4.所以,EB的长是4km.【考点】本题考查了勾股定理的应用,熟练掌握勾股定理是解本题的关键.4、尺【解析】【分析】设秋千的绳索长为x尺,根据题意可得AB=(x-4)尺,利用勾股定理可得x2=102+(x-4)2,解之即可.【详解】解:设秋千的绳索长为x尺,根据题意可列方程为:x2=102+(x-4)2,解得:x=,∴秋千的绳索长为尺.【考点】此题主要考查了勾股定理的应用,关键是正确理解题意,表示出AB、AC的长,掌握直角三角形中两直角边的平方和等于斜边的平方.5、见解析【解析】【分析】连接AM得到三个直角三角形,运用勾股定理分别表示出AD²、AM²、BM²进行代换就可以最后得到所要证明的结果.【详解】证明:连接MA,∵MD⊥AB,∴AD2=AM2-MD2,BM2=BD2+MD2,∵∠C=90°,∴AM2=AC2+CM2∵M为BC中点,∴BM=MC.∴AD2=AC2+BD2【考点】本题考查
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国多晶硅棒项目商业计划书
- 2025年中国四氢双环戊二烯项目创业计划书
- 中国农用机械涂料项目创业计划书
- 中国空气电池项目创业计划书
- 中国赖氨酸项目创业计划书
- 哈尔滨市人民医院血糖管理考核考核
- 呼和浩特市人民医院起搏器程控与ICD参数调整考核
- 大同市人民医院穿支皮瓣设计与切取考核
- 2025年中国微玻璃纤维棉项目创业计划书
- 包头市人民医院机械清创技术考核
- 宫颈恶性肿瘤的个案护理
- 英式马术课件
- 2025至2030中国猎头行业发展趋势分析与未来投资战略咨询研究报告
- 地产人员培训课件
- 环境工程专业导论课件
- 牙周治疗图讲课件
- 急诊外科急腹症临床处置要点
- 北京市2025学年高二(上)第一次普通高中学业水平合格性考试物理试题(原卷版)
- 《相互作用-力》单元设计
- 机械制造技术课程设计-法兰轴套加工工艺铣R6圆弧槽夹具设计
- 6G移动通信的关键技术与未来发展
评论
0/150
提交评论