




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
华东师大版8年级下册期末测试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、若一次函数的图像经过第一、三、四象限,则的值可能为()A.-2 B.-1 C.0 D.22、、两地相距,甲骑摩托车从地匀速驶向地.当甲行驶小时途径地时,一辆货车刚好从地出发匀速驶向地,当货车到达地后立即掉头以原速匀速驶向地.如图表示两车与地的距离和甲出发的时间的函数关系.则下列说法错误的是()A.甲行驶的速度为 B.货车返回途中与甲相遇后又经过甲到地C.甲行驶小时时货车到达地 D.甲行驶到地需要3、已知锐角∠AOB,如图.(1)在射线OA上取一点C,以点O为圆心,OC长为半径画弧,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,两弧交于点P,连接CP,DP;(3)作射线OP交CD于点Q.根据以上作图过程及所作图形,下列结论中错误的是()A.四边形OCPD是菱形 B.CP=2QCC.∠AOP=∠BOP D.CD⊥OP4、如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x,y表示直角三角形的两直角边(x>y),则下列四个说法:①x2+y2=49,②x﹣y=2,③2xy+4=49,④x+y=9.其中说法正确的是()A.②③ B.①②③ C.②④ D.①②④5、如图,已知直线与轴交于点,与轴交于点,以点为圆心、长为半径画弧,与轴正半轴交于点,则点的坐标为()A. B. C. D.6、在平面直角坐标系中,若函数的图象经过第一、二、三象限,则的取值()A.小于0 B.等于0 C.大于0 D.非负数7、如图,在正方形ABCD中,,点E在对角线AC上,若,则CDE的面积为()A.3 B.4 C.5 D.68、一组数据1,2,,3的平均数是3,则该组数据的方差为()A. B. C.6 D.14第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、写出一个过点的一次函数解析式__.2、数据3、1、x、、的平均数是1,则这组数据的中位数是__________.3、如图,在平行四边形ABCD中,对角线AC,BD交于点O,AC⊥AB,AB=,且AC:BD=2:3,那么AC的长为___.4、如图1,在平面直角坐标系xOy中,□ABCD的面积为10,且边AB在x轴上.如果将直线y=﹣x沿x轴正方向平移,在平移过程中,记该直线在x轴上平移的距离为m,直线被平行四边形的边所截得的线段的长度为n,且n与m的对应关系如图2所示,那么图2中a的值是___,b的值是___.5、如图,OA1B1,A1A2B2,A2A3B3,⋯是分别以A1,A2,A3,…,为直角顶点且一条直角边在x轴正半轴上的等腰直角三角形,其斜边中点C1(x1,y1),C2(x2,y2),C3(x3,y3),…,均在反比例函数的图象上,则C1的坐标是_;y1+y2+y3+…+y2022的值为___.6、将直线沿轴向上平移2个单位长度后的直线所对应的函数表达式是__________.7、如图,将正方形置于平面直角坐标系中,其中,,边在轴上,直线与正方形的边有两个交点、,当时,的取值范围是__.三、解答题(7小题,每小题10分,共计70分)1、在平面直角坐标系xOy中,对于线段AB和点C,若△ABC是以AB为一条直角边,且满足AC>AB的直角三角形,则称点C为线段AB的“关联点”,已知点A的坐标为(0,1).(1)若B(2,1),则点D(3,1),E(2,0),F(0,-3),G(-1,-2)中,是AB关联点的有_______;(2)若点B(-1,0),点P在直线y=2x-3上,且点P为线段AB的关联点,求点P的坐标;(3)若点B(b,0)为x轴上一动点,在直线y=2x+2上存在两个AB的关联点,求b的取值范围.2、已知二元一次方程,通过列举将方程的解写成下列表格的形式,x-3-1ny6m-2如果将二元一次方程的解所包含的未知数x的值对应直角坐标系中一个点的横坐标,未知数y的值对应这个点的纵坐标,这样每一个二元一次方程的解,就可以对应直角坐标系中的一个点,例如:解的对应点是.(1)①表格中的______,______;②根据以上确定対应点坐标的方法,在所给的直角坐标系中画出表格中给出的三个解的对应点;(2)若点,恰好都落在的解对应的点组成的图象上,求a,b的值.3、如图,在正方形中,为边上一动点(不与点,重合),延长到点,连接,使得.为边一点,且,连接.点关于直线的对称点为,连接,.(1)依据题意补全图形,证明:;(2)延长交的延长线于点,则的形状是;(3)用等式表示线段,与的数量关系,并证明.4、如图,点B,D分别在射线AS,AR上.(1)求作点C使得四边形ABCD是平行四边形;(要求:尺规作图,不写作法,保留作图痕迹)(2)根据你的作图证明四边形ABCD是平行四边形,连接AC,BD相交于点O,若,且,求AC的值.5、下面是小东设计的“利用直角三角形和它的斜边中点作矩形”的尺规作图过程.已知:如图,在Rt△ABC中,∠ABC=90°,O为AC的中点.求作:四边形ABCD,使得四边形ABCD是矩形.作法:①作射线BO,以点O为圆心,OB长为半径画弧,交射线BO于点D;②连接AD,CD.四边形ABCD是所求作的矩形.根据小东设计的尺规作图过程,(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:∵点O为AC的中点,∴AO=CO.又∵BO=,∴四边形ABCD是平行四边形()(填推理的依据).∵∠ABC=90°,∴□ABCD是矩形()(填推理的依据).6、求作:矩形ABCD,使它的对角线,且对角线夹角为60°.7、如图,已知函数y1=x+1的图像与y轴交于点A,一次函数y2=kx+b的图像经过点B(0,-1),并且与x轴以及y1=x+1的图像分别交于点C、D,点D的横坐标为1.(1)求y2函数表达式;(2)在y轴上是否存在这样的点P,使得以点P、B、D为顶点的三角形是等腰三角形.如果存在,求出点P坐标;如果不存在,说明理由.(3)若一次函数y3=mx+n的图像经过点D,且将四边形AOCD的面积分成1:2.求函数y3=mx+n的表达式.-参考答案-一、单选题1、D【解析】【分析】利用一次函数图象与系数的关系可得出m-1>0,解之即可得出m的取值范围,再对照四个选项即可得出结论.【详解】解:∵一次函数y=(m-1)x-1的图象经过第一、三、四象限,∴m-1>0,∴m>1,∴m的值可能为2.故选:D.【点睛】本题考查了一次函数图象与系数的关系、解一元一次不等式,牢记“k>0,b<0⇔y=kx+b的图象经过一、三、四象限”是解题的关键.2、C【解析】【分析】根据函数图象结合题意,可知两地的距离为,此时甲行驶了1小时,进而求得甲的速度,即可判断A、D选项,根据总路程除以速度即可求得甲行驶到地所需要的时间,根据货车行驶的时间和路程结合图像可得第小时时货车与甲相遇,据此判断B选项,求得相遇时,甲距离地的距离,进而根据货车行驶的路程除以时间即可求得货车的速度,进而求得货车到达地所需要的时间.【详解】解:两地的距离为,故A选项正确,不符合题意;故D选项正确,不符合题意;根据货车行驶的时间和路程结合图像可得第小时时货车与甲相遇,则即货车返回途中与甲相遇后又经过甲到地故B选项正确,相遇时为第4小时,此时甲行驶了,货车行驶了则货车的速度为则货车到达地所需的时间为即第小时故甲行驶小时时货车到达地故C选项不正确故选C【点睛】本题考查了一次函数的应用,弄清楚函数图象中各拐点的意义是解题的关键.3、A【解析】【分析】根据作图信息可以判断出OP平分,由此可以逐一判断即可.【详解】解:由作图可知,平分∴OP垂直平分线段CD∴∠AOP=∠BOP,CD⊥OP故选项C,D正确;由作图可知,∴是等边三角形,∴∵OP垂直平分线段CD∴∴CP=2QC故选项B正确,不符合题意;由作图可知,,不能确定四边形OCPD是菱形,故选项A符合题意,故选:A【点睛】本题考查了基本作图,解题的关键是熟练掌握作图的依据.4、B【解析】【分析】根据正方形的性质,直角三角形的性质,直角三角形面积的计算公式及勾股定理解答即可.【详解】如图所示,∵△ABC是直角三角形,∴根据勾股定理:,故①正确;由图可知,故②正确;由图可知,四个直角三角形的面积与小正方形的面积之和为大正方形的面积,列出等式为,即,故③正确;由可得,又∵,两式相加得:,整理得:,,故④错误;故正确的是①②③.故答案选B.【点睛】本题主要考查了勾股定理的应用,正方形性质,完全平方公式的应用,算术平方根,准确分析判断是解题的关键.5、C【解析】【分析】求出点A、点坐标,求出长即可求出点的坐标.【详解】解:当x=0时,,点B的坐标为(0,-1);当y=0时,,解得,,点A的坐标为(2,0);即,,;以点为圆心、长为半径画弧,与轴正半轴交于点,故,则,点C的坐标为;故选:C【点睛】本题考查了一次函数与坐标轴交点坐标和勾股定理,解题关键是求出一次函数与坐标轴交点坐标,利用勾股定理求出线段长.6、C【解析】【分析】一次函数过第一、二、三象限,则,根据图象结合性质可得答案.【详解】解:如图,函数的图象经过第一、二、三象限,则函数的图象与轴交于正半轴,故选C【点睛】本题考查的是一次函数的图象与性质,掌握“一次函数过第一、二、三象限,则”是解本题的关键.7、A【解析】【分析】根据正方形的性质,全等三角形的性质和三角形的面积公式解答即可.【详解】∵正方形ABCD,∴AB=AD,∠BAC=DAC,∵AE=AE,∴△ABE≌△ADE,∴=5,同理△CBE≌△CDE,∴,∵,∴CDE的面积为:=3,故选A.【点睛】本题考查了正方形的性质,关键是根据全等三角形的性质和三角形的面积公式解答.8、B【解析】【分析】根据平均数的定义先求出a的值,再根据方差公式进行计算即可.【详解】解:∵数据1,2,a,3的平均数是3,∴(1+2+a+3)÷4=3,∴a=6,∴这组数据的方差为[(1−3)2+(2−3)2+(6−3)2+(3−3)2]=.故选:B.【点睛】本题考查了方差,一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1−)2+(x2−)2+…+(xn−)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.二、填空题1、(答案不唯一)【解析】【分析】设该一次函数的解析式为,取(或其他值都可以),将点代入求解即可得.【详解】解:设该一次函数的解析式为,取,点在一次函数图象上,.一次函数的解析式为,故答案为:(答案不唯一).【点睛】题目主要考查一次函数解析式的确定,理解题意,熟练掌握待定系数法确定函数解析式是解题关键.2、1【解析】【分析】因为3,1,x,-1,-3的平均数是1,可求出x,再根据中位数定义,将一组数据从小到大排序后,处于中间位置或中间位置上两个数据的平均数即可.【详解】解:依题意得:,解得x=5.这组数据的从小到大排序为-3,-1,1,3,5,这组数据的中位数为1.故答案是:1.【点睛】此题主要考查了平均数与中位数的求法,关键是熟练地记忆平均数公式和中位数定义.3、4【解析】【分析】四边形是平行四边形,可得,由,可知,由可知在中勾股定理求解的值,进而求解的值.【详解】解:∵四边形是平行四边形∴∵∴∵∴∴设则解得:则故故答案为:4.【点睛】本题考查了勾股定理,平行四边形的性质等知识.解题的关键在于正确的求解.4、7【解析】【分析】在图1中,过点D,B,C作直线与已知直线y=﹣x平行,交x轴于点E,F,过D作DG⊥x轴于G,在图2中,取A'(2,0),E'(5,b),B'(a,b),F'(10,0),求出OA=m=2,OE=m=5,DE=n=b,则AE=3,OF=m=10,OB=m=a,根据▱ABCD的面积为10,求出DG=2,得到DE即为b值.【详解】解:在图1中,过点D,B,C作直线与已知直线y=﹣x平行,交x轴于点E,F,过D作DG⊥x轴于G,在图2中,取A'(2,0),E'(5,b),B'(a,b),F'(10,0),图1中点A对应图2中的点A',得出OA=m=2,图1中点E对应图2中的点E',得出OE=m=5,DE=n=b,则AE=3,图1中点F对应图2中的点F',得出OF=m=10,图1中点B对应图2中的点B',得出OB=m=a,∵a=OB=OF﹣BF,BF=AE=3,OF=10∴a=7,∵▱ABCD的面积为10,AB=OB﹣OA=7﹣2=5,∴DG=2,在Rt△DGE中,∠DEG=45°,∴DE==,故答案是:7,.【点睛】此题考查了平行四边形与函数图象的结合,正确掌握平行四边形的性质,直线y=﹣x与坐标轴夹角45度的性质,一次函数图象平行的性质,勾股定理,正确理解函数图象得到相关信息是解题的关键.5、【解析】【分析】过、、…分别作x轴的垂线,垂足分别为、、…,故是等腰直角三角形,从而求出的坐标;由点是等腰直角三角形的斜边中点,可以得到的长,然后再设未知数,表示点的坐标,确定,代入反比例函数的关系式,建立方程解出未知数,表示点的坐标,确定,……然后再求和.【详解】过、、…分别作x轴的垂线,垂足分别为、、…,则,∵是等腰直角三角形,∴,∴,∴,其斜边的中点在反比例函数,∴,即,∴,∴,设,则,此时,代入得:,解得:,即:,同理:,,……,∴故答案为:,.【点睛】本题考查反比例函数的图象和性质、反比例函数图象上点的坐标特征、等腰直角三角形的性质等知识,掌握相关知识点之间的应用是解题的关键.6、【解析】【分析】根据一次函数的平移规律:“上加下减常数项,左加右减自变量”,可知将函数沿着y轴向上平移2个单位长度,就是给原一次函数常数项后加2,化简后即可得到答案.【详解】根据一次函数的平移规律:“上加下减常数项,左加右减自变量”,可知将函数沿着y轴向上平移2个单位长度,就是给原一次函数常数项后加2,则变化后的函数解析式应变为:,化简后结果为:,故答案为:.【点睛】本题考查一次函数的图像变化与函数解析式变化之间的规律,熟练掌握并应用变化规律是解决本题的关键.7、或且【解析】【分析】设BC与y轴交于点M,根据题意可得E点不在AD边上,即,分两种情况进行讨论:①如果,那么点E在AB边或线段BM上;②如果,那么点E在CD边或线段CM上;对两种情况的临界情况进行分析即可得出结果.【详解】解:如图,设BC与y轴交于点M,,,,∴E点不在AD边上,;①如果,那么点E在AB边或线段BM上,当点E在AB边且时,由勾股定理得,,,,,当直线经过点,时,.,,当点E在线段BM上时,,,符合题意;②如果,那么点E在CD边或线段CM上,当点E在CD边且时,E与D重合;当时,由勾股定理得,,,,此时E与C重合,当直线经过点时,.当点E在线段CM上时,,且,符合题意;综上,当时,的取值范围是或且,故答案为:或且.【点睛】题目主要考查正比例函数的综合问题,包括其性质及分类讨论思想,勾股定理解三角形等,理解题意,熟练掌握运用分类思想是解题关键.三、解答题1、(1)点E,点F;(2)()或();(3)b的取值范围1<b<2或2<b<3.【解析】【分析】(1)根据以点B为直角顶点,点B与点E横坐标相同,点E在过点B与AB垂直的直线上,△ABE为直角三角形,且AE大于AB;以点A为直角顶点,点A与点F横坐标相同,△AFB为直角三角形,BF大于AB即可;(2)根据点A(0,1)点B(-1,0),OA=OB,∠AOB=90°,得出△AOB为等腰直角三角形,可得∠ABO=∠BAO=45°,以点A为直角顶点,过点A,与AB垂直的直线交x轴于S,利用待定系数法求出AS解析式为,联立方程组,以点B为直角顶点,过点B,与AB垂直的直线交y轴于R,∠OBR=90°-∠ABO=45°,可得△OBR为等腰直角三角形,OR=OB=1,点R(0,-1),利用平移的性质可求BR解析式为,联立方程组,解方程组即可;(3)过点A与AB垂直的直线交直线y=2x+2于U,把△AOB绕点A顺时针旋转90°,得△AO′U,AO′=AO=1,O′U=OB=b,根据点U(-1,b-1)在直线上,得出方程,求出b的值,当过点A的直线与直线平行时没有“关联点”,OB=OW=b=2,得出在1<b<2时,直线上存在两个AB的“关联点”,当b>2时,根据旋转性质将△AOB绕点A逆时针旋转90°得到△AO′U,得出AO′=AO=1,O′U=OB=b,根据点U(1,1+b)在直线上,列方程,得出即可.(1)解:点D与AB纵坐标相同,在直线AB上,不能构成直角三角形,以点B为直角顶点,点B与点E横坐标相同,点E在过点B与AB垂直的直线上,∴△ABE为直角三角形,且AE大于AB;以点A为直角顶点,点A与点F横坐标相同,△AFB为直角三角形,AF=4>AB=2,∴点E与点F是AB关联点,点G不在A、B两点垂直的直线上,故不能构成直角三角形,故答案为点E,点F;(2)解:∵点A(0,1)点B(-1,0),OA=OB,∠AOB=90°,∴△AOB为等腰直角三角形,AB=∴∠ABO=∠BAO=45°,以点A为直角顶点,过点A,与AB垂直的直线交x轴于S,∴∠OAS=90°-∠BAO=45°,∴△AOS为等腰直角三角形,∴OS=OA=1,点S(1,0),设AS解析式为代入坐标得:,解得,AS解析式为,∴,解得,点P(),AP=,AP>AB以点B为直角顶点,过点B,与AB垂直的直线交y轴于R,∴∠OBR=90°-∠ABO=45°,∴△OBR为等腰直角三角形,∴OR=OB=1,点R(0,-1),过点R与AS平行的直线为AS直线向下平移2个单位,则BR解析式为,∴,解得,点P1(),AP1=>,∴点P为线段AB的关联点,点P的坐标为()或();(3)解:过点A与AB垂直的直线交直线y=2x+2于U,把△AOB绕点A顺时针旋转90°,得△AO′U,∴AO′=AO=1,O′U=OB=b,点U(-1,b-1)在直线上,∴∴,∴当b>1时存在两个“关联点”,当b<1时,UA<AB,不满足定义,没有两个“关联点”当过点A的直线与直线平行时没有“关联点”与x轴交点X(-1,0),与y轴交点W(0,2)∵OA=OX=1,∠XOW=∠AOB=90°,AB⊥XW,∴△OXW顺时针旋转90°,得到△OAB,∴OB=OW=2,∴在1<b<2时,直线上存在两个AB的“关联点”,当b>2时,将△AOB绕点A逆时针旋转90°得到△AO′U,∴AO′=AO=1,O′U=OB=b,点U(1,1+b)在直线上,∴∴解得∴当2<b<3时,直线上存在两个AB的“关联点”,当b>3时,UA<AB,不满足定义,没有两个“关联点”综合得,b的取值范围1<b<2或2<b<3.【点睛】本题考查新定义线段的意义,直角三角形性质,仔细阅读新定义,由两个条件,(1)组成直角三角形,(2)AC>AB,等腰直角三角形,勾股定理两点距离公式,待定系数法求直线解析式,图形旋转,两函数交点联立方程组,掌握新定义线段的意义,直角三角形性质,仔细阅读新定义,由两个条件,(1)组成直角三角形,(2)AC>AB,等腰直角三角形,勾股定理两点距离公式,待定系数法求直线解析式,图形旋转,两函数交点联立方程组,是解题关键.2、(1)①4,5;②图见解析(2)【解析】【分析】(1)①将代入方程可得的值,将代入方程可得的值;②先确定三个解的对应点的坐标,再在所给的平面直角坐标系中画出即可得;(2)将点,代入方程可得一个关于二元一次方程组,解方程组即可得.(1)解:①将代入方程得:,解得,即,将代入方程得:,解得,即,故答案为:4,5;②由题意,三个解的对应点的坐标分别为,,,在所给的平面直角坐标系中画出如图所示:(2)解:由题意,将代入得:,整理得:,解得.【点睛】本题考查了二元一次方程(组)、平面直角坐标系等知识点,熟练掌握二元一次方程组的解法是解题关键.3、(1)见解析(2)等腰直角三角形(3),证明见解析【解析】【分析】(1)根据题意画出图形即可.由SAS证明△ABE≌△ADG得出∠BAE=∠DAG,由对称的性质得出∠BAE=∠PAB,即可得出∠DAG=∠PAB;(2)结论:△APQ是等腰直角三角形.延长MB交AG的延长线于点Q,证明∠PAQ=90°,AP=AQ即可.(3)连接BD,由SAS证明△BAQ≌△DAF得出∠Q=∠AFD=45°,得出∠BFD=90°,由勾股定理得出BF2+DF2=BD2,即可得出结论.(1)证明:如图1所示:四边形是正方形,,,在和中,,,,点关于直线的对称点为,,.(2)解:结论:是等腰直角三角形.理由:,,,由对称性可知:,,,,是等腰直角三角形.故答案为:等腰直角三角形.(3)解:结论:;理由如下:连接,如图2所示,,,,,,在和中,,,,,,,,.【点睛】本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、轴对称的性质、等腰三角形的判定与性质、勾股定理等知识;本题综合性强,有一定难度,证明三角形全等是解题的关键.4、(1)见解析(2)【解析】【分析】(1)分别以为圆心,以为半径作弧交于点即为所求;(2)先证明四边形ABCD是平行四边形,再在中利用勾股定理求解.(1)解:作图如下:(2)解如图:,四边形ABCD是平行四边形,,,在中,,,,.【点睛】本题考查了平行四边形的判定及性质,勾股定理,解题的关键是根据题意作出相应的图形.5、(1)补全图形见解析(2)OD,对角线互相平分的四边形是平行四边形,有一个角是直角的平行四边形是矩形.【解析】【分析】(1)根据题意画图即可;(2)根据对角线互相平分的四边形是平行四边形,得到四边形ABCD是矩形,再结合一个角是直角,即可得证.(1)解:如图,四边形ABCD即为所求.(2)证明:∵点O为AC的中点,∴AO=CO.又∵BO=OD,∴四边形ABCD是平行四边形(对角线互相平分的四边形是平行四边形),∵∠ABC=90°,∴▱ABCD是矩形(有一个角是直角的平行四边形是矩形).故答案为:OD,对角线互相平分的四边形是平行四边形,有一个角是直角的平行四边形是矩形.【点睛】本题考查矩形的判定、平行四边形的判定,对角线互相平分的四边形是平行四边形;有一个角是直角的平行四边形是矩形.6、见详解.【解析】【分析】作线段AC的垂直平分线交AC于点O,作等边△AOB,延长BO,截取OD=OB,连接BC,CD,AD即可.【详解】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 侯车亭施工合同4篇
- 高中学校食品供货合同2篇
- 新解读《GB-T 31006-2014自动分拣过程包装物品条码规范》
- 年会设备租赁合同范本
- 新房全款代购合同范本
- 合伙开汽修合同范本
- 门窗护栏施工合同范本
- 休闲餐饮出租合同范本
- 果蔬分拣合同范本
- 邮政集团柜员合同范本
- 颌面外科清创缝合
- 结核患者管理方案模板(3篇)
- 人教版数学二年级上册第一单元 分类与整 理 综合素养测评A卷(含答案)
- 2025年北京市公务员考试行测真题及答案详解参考
- 物料定位管理办法
- 2025至2030非晶合金变压器行业市场占有率及投资前景评估规划报告
- 护理专业话术分享
- GB/T 16432-2025康复辅助器具分类和术语
- 公司投标奖罚管理办法
- 支气管造影动脉栓塞术护理
- 老年肺炎的护理课件
评论
0/150
提交评论