2025年浙江省选考十校联盟数学高三上期末学业质量监测试题_第1页
2025年浙江省选考十校联盟数学高三上期末学业质量监测试题_第2页
2025年浙江省选考十校联盟数学高三上期末学业质量监测试题_第3页
2025年浙江省选考十校联盟数学高三上期末学业质量监测试题_第4页
2025年浙江省选考十校联盟数学高三上期末学业质量监测试题_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025年浙江省选考十校联盟数学高三上期末学业质量监测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知命题p:“”是“”的充要条件;,,则()A.为真命题 B.为真命题C.为真命题 D.为假命题2.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积()A. B. C. D.3.已知集合,将集合的所有元素从小到大一次排列构成一个新数列,则()A.1194 B.1695 C.311 D.10954.已知实数满足则的最大值为()A.2 B. C.1 D.05.设,,,则,,三数的大小关系是A. B.C. D.6.执行如图所示的程序框图,则输出的()A.2 B.3 C. D.7.如图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.则下列结论中表述不正确的是()A.从2000年至2016年,该地区环境基础设施投资额逐年增加;B.2011年该地区环境基础设施的投资额比2000年至2004年的投资总额还多;C.2012年该地区基础设施的投资额比2004年的投资额翻了两番;D.为了预测该地区2019年的环境基础设施投资额,根据2010年至2016年的数据(时间变量t的值依次为)建立了投资额y与时间变量t的线性回归模型,根据该模型预测该地区2019的环境基础设施投资额为256.5亿元.8.某三棱锥的三视图如图所示,则该三棱锥的体积为()A. B.4C. D.59.幻方最早起源于我国,由正整数1,2,3,……,这个数填入方格中,使得每行、每列、每条对角线上的数的和相等,这个正方形数阵就叫阶幻方.定义为阶幻方对角线上所有数的和,如,则()A.55 B.500 C.505 D.505010.二项式展开式中,项的系数为()A. B. C. D.11.若的内角满足,则的值为()A. B. C. D.12.设,是空间两条不同的直线,,是空间两个不同的平面,给出下列四个命题:①若,,,则;②若,,,则;③若,,,则;④若,,,,则.其中正确的是()A.①② B.②③ C.②④ D.③④二、填空题:本题共4小题,每小题5分,共20分。13.在的二项展开式中,只有第5项的二项式系数最大,则该二项展开式中的常数项等于_____.14.已知多项式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,则a4=________,a5=________.15.四边形中,,,,,则的最小值是______.16.已知平面向量、的夹角为,且,则的最大值是_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,平面ABC,,.(1)求证:平面ACD;(2)设,表示三棱锥B-ACE的体积,求函数的解析式及最大值.18.(12分)在四棱锥的底面是菱形,底面,,分别是的中点,.(Ⅰ)求证:;(Ⅱ)求直线与平面所成角的正弦值;(III)在边上是否存在点,使与所成角的余弦值为,若存在,确定点的位置;若不存在,说明理由.19.(12分)为贯彻十九大报告中“要提供更多优质生态产品以满足人民日益增长的优美生态环境需要”的要求,某生物小组通过抽样检测植物高度的方法来监测培育的某种植物的生长情况.现分别从、、三块试验田中各随机抽取株植物测量高度,数据如下表(单位:厘米):组组组假设所有植株的生长情况相互独立.从、、三组各随机选株,组选出的植株记为甲,组选出的植株记为乙,组选出的植株记为丙.(1)求丙的高度小于厘米的概率;(2)求甲的高度大于乙的高度的概率;(3)表格中所有数据的平均数记为.从、、三块试验田中分别再随机抽取株该种植物,它们的高度依次是、、(单位:厘米).这个新数据与表格中的所有数据构成的新样本的平均数记为,试比较和的大小.(结论不要求证明)20.(12分)2019年是五四运动100周年.五四运动以来的100年,是中国青年一代又一代接续奋斗、凯歌前行的100年,是中口青年用青春之我创造青春之中国、青春之民族的100年.为继承和发扬五四精神在青年节到来之际,学校组织“五四运动100周年”知识竞赛,竞赛的一个环节由10道题目组成,其中6道A类题、4道B类题,参赛者需从10道题目中随机抽取3道作答,现有甲同学参加该环节的比赛.(1)求甲同学至少抽到2道B类题的概率;(2)若甲同学答对每道A类题的概率都是,答对每道B类题的概率都是,且各题答对与否相互独立.现已知甲同学恰好抽中2道A类题和1道B类题,用X表示甲同学答对题目的个数,求随机变量X的分布列和数学期望.21.(12分)已知在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴非负半轴为极轴建立极坐标系,曲线的极坐标方程为,点的极坐标为.(1)求直线的极坐标方程;(2)若直线与曲线交于,两点,求的面积.22.(10分)已知,求的最小值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.B【解析】

由的单调性,可判断p是真命题;分类讨论打开绝对值,可得q是假命题,依次分析即得解【详解】由函数是R上的增函数,知命题p是真命题.对于命题q,当,即时,;当,即时,,由,得,无解,因此命题q是假命题.所以为假命题,A错误;为真命题,B正确;为假命题,C错误;为真命题,D错误.故选:B本题考查了命题的逻辑连接词,考查了学生逻辑推理,分类讨论,数学运算的能力,属于中档题.2.C【解析】

画出几何体的直观图,利用三视图的数据求解几何体的表面积即可.【详解】解:几何体的直观图如图,是正方体的一部分,P−ABC,正方体的棱长为2,

该几何体的表面积:.故选C.本题考查三视图求解几何体的直观图的表面积,判断几何体的形状是解题的关键.3.D【解析】

确定中前35项里两个数列中的项数,数列中第35项为70,这时可通过比较确定中有多少项可以插入这35项里面即可得,然后可求和.【详解】时,,所以数列的前35项和中,有三项3,9,27,有32项,所以.故选:D.本题考查数列分组求和,掌握等差数列和等比数列前项和公式是解题基础.解题关键是确定数列的前35项中有多少项是中的,又有多少项是中的.4.B【解析】

作出可行域,平移目标直线即可求解.【详解】解:作出可行域:由得,由图形知,经过点时,其截距最大,此时最大得,当时,故选:B考查线性规划,是基础题.5.C【解析】

利用对数函数,指数函数以及正弦函数的性质和计算公式,将a,b,c与,比较即可.【详解】由,,,所以有.选C.本题考查对数值,指数值和正弦值大小的比较,是基础题,解题时选择合适的中间值比较是关键,注意合理地进行等价转化.6.B【解析】

运行程序,依次进行循环,结合判断框,可得输出值.【详解】起始阶段有,,第一次循环后,,第二次循环后,,第三次循环后,,第四次循环后,,所有后面的循环具有周期性,周期为3,当时,再次循环输出的,,此时,循环结束,输出,故选:B本题主要考查程序框图的相关知识,经过几次循环找出规律是关键,属于基础题型.7.D【解析】

根据图像所给的数据,对四个选项逐一进行分析排除,由此得到表述不正确的选项.【详解】对于选项,由图像可知,投资额逐年增加是正确的.对于选项,投资总额为亿元,小于年的亿元,故描述正确.年的投资额为亿,翻两翻得到,故描述正确.对于选项,令代入回归直线方程得亿元,故选项描述不正确.所以本题选D.本小题主要考查图表分析能力,考查利用回归直线方程进行预测的方法,属于基础题.8.B【解析】

还原几何体的直观图,可将此三棱锥放入长方体中,利用体积分割求解即可.【详解】如图,三棱锥的直观图为,体积.故选:B.本题主要考查了锥体的体积的求解,利用的体积分割的方法,考查了空间想象力及计算能力,属于中档题.9.C【解析】

因为幻方的每行、每列、每条对角线上的数的和相等,可得,即得解.【详解】因为幻方的每行、每列、每条对角线上的数的和相等,所以阶幻方对角线上数的和就等于每行(或每列)的数的和,又阶幻方有行(或列),因此,,于是.故选:C本题考查了数阵问题,考查了学生逻辑推理,数学运算的能力,属于中档题.10.D【解析】

写出二项式的通项公式,再分析的系数求解即可.【详解】二项式展开式的通项为,令,得,故项的系数为.故选:D本题主要考查了二项式定理的运算,属于基础题.11.A【解析】

由,得到,得出,再结合三角函数的基本关系式,即可求解.【详解】由题意,角满足,则,又由角A是三角形的内角,所以,所以,因为,所以.故选:A.本题主要考查了正弦函数的性质,以及三角函数的基本关系式和正弦的倍角公式的化简、求值问题,着重考查了推理与计算能力.12.C【解析】

根据线面平行或垂直的有关定理逐一判断即可.【详解】解:①:、也可能相交或异面,故①错②:因为,,所以或,因为,所以,故②对③:或,故③错④:如图因为,,在内过点作直线的垂线,则直线,又因为,设经过和相交的平面与交于直线,则又,所以因为,,所以,所以,故④对.故选:C考查线面平行或垂直的判断,基础题.二、填空题:本题共4小题,每小题5分,共20分。13.1【解析】

由题意可得,再利用二项展开式的通项公式,求得二项展开式常数项的值.【详解】的二项展开式的中,只有第5项的二项式系数最大,,通项公式为,令,求得,可得二项展开式常数项等于,故答案为1.本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.14.164【解析】

只需令x=0,易得a5,再由(x+1)3(x+2)2=(x+1)5+2(x+1)4+(x+1)3,可得a4=+2+.【详解】令x=0,得a5=(0+1)3(0+2)2=4,而(x+1)3(x+2)2=(x+1)3[(x+1)2+2(x+1)+1]=(x+1)5+2(x+1)4+(x+1)3;则a4=+2+=5+8+3=16.故答案为:16,4.本题主要考查了多项式展开中的特定项的求解,可以用赋值法也可以用二项展开的通项公式求解,属于中档题.15.【解析】

在中利用正弦定理得出,进而可知,当时,取最小值,进而计算出结果.【详解】,如图,在中,由正弦定理可得,即,故当时,取到最小值为.故答案为:.本题考查解三角形,同时也考查了常见的三角函数值,考查逻辑推理能力与计算能力,属于中档题.16.【解析】

建立平面直角坐标系,设,可得,进而可得出,,由此将转化为以为自变量的三角函数,利用三角恒等变换思想以及正弦函数的有界性可得出结果.【详解】根据题意建立平面直角坐标系如图所示,设,,以、为邻边作平行四边形,则,设,则,,且,在中,由正弦定理,得,即,在中,由正弦定理,得,即.,,则,当时,取最大值.故答案为:.本题考查了向量的数量积最值的计算,将问题转化为角的三角函数的最值问题是解答的关键,考查计算能力,属于难题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)见解析(2),最大值.【解析】

(1)先证明,,故平面ADC.由,即得证;(2)可证明平面ABC,结合条件表示出,利用均值不等式,即得解.【详解】(1)证明:∵四边形DCBE为平行四边形,∴,.∵平面ABC,平面ABC,∴.∵AB是圆O的直径,∴,且,平面ADC,∴平面ADC.∵,∴平面ADC.(2)解∵平面ABC,,∴平面ABC.在中,,.在中,∵,∴,∴,∴.∵,当且仅当,即时取等号,∴当时,体积有最大值.本题考查了线面垂直的证明和三棱锥的体积,考查了学生逻辑推理,空间想象,转化划归,数学运算的能力,属于中档题.18.(Ⅰ)见解析;(Ⅱ);(Ⅲ)见解析.【解析】

(Ⅰ)由题意结合几何关系可证得平面,据此证明题中的结论即可;(Ⅱ)建立空间直角坐标系,求得直线的方向向量与平面的一个法向量,然后求解线面角的正弦值即可;(Ⅲ)假设满足题意的点存在,设,由直线与的方向向量得到关于的方程,解方程即可确定点F的位置.【详解】(Ⅰ)由菱形的性质可得:,结合三角形中位线的性质可知:,故,底面,底面,故,且,故平面,平面,(Ⅱ)由题意结合菱形的性质易知,,,以点O为坐标原点,建立如图所示的空间直角坐标系,则:,设平面的一个法向量为,则:,据此可得平面的一个法向量为,而,设直线与平面所成角为,则.(Ⅲ)由题意可得:,假设满足题意的点存在,设,,据此可得:,即:,从而点F的坐标为,据此可得:,,结合题意有:,解得:.故点F为中点时满足题意.本题主要考查线面垂直的判定定理与性质定理,线面角的向量求法,立体几何中的探索性问题等知识,意在考查学生的转化能力和计算求解能力.19.(1);(2);(3).【解析】

设事件为“甲是组的第株植物”,事件为“乙是组的第株植物”,事件为“丙是组的第株植物”,、、、,可得出.(1)设事件为“丙的高度小于厘米”,可得,且、互斥,利用互斥事件的概率公式可求得结果;(2)设事件为“甲的高度大于乙的高度”,列举出符合题意的基本事件,利用互斥事件的概率加法公式可求得所求事件的概率;(3)根据题意直接判断和的大小即可.【详解】设事件为“甲是组的第株植物”,事件为“乙是组的第株植物”,事件为“丙是组的第株植物”,、、、.由题意可知,、、、.(1)设事件为“丙的高度小于厘米”,由题意知,又与互斥,所以事件的概率;(2)设事件为“甲的高度大于乙的高度”.由题意知.所以事件的概率;(3).本题考查概率的求法,考查互斥事件加法公式、相互

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论