




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省白城市2025年数学高三上期末经典模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知复数,满足,则()A.1 B. C. D.52.已知数列为等差数列,且,则的值为()A. B. C. D.3.已知角的顶点为坐标原点,始边与轴的非负半轴重合,终边上有一点,则().A. B. C. D.4.已知函数.设,若对任意不相等的正数,,恒有,则实数a的取值范围是()A. B.C. D.5.某人2018年的家庭总收人为元,各种用途占比如图中的折线图,年家庭总收入的各种用途占比统计如图中的条形图,已知年的就医费用比年的就医费用增加了元,则该人年的储畜费用为()A.元 B.元 C.元 D.元6.已知函数的最小正周期为,且满足,则要得到函数的图像,可将函数的图像()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度7.下列说法正确的是()A.“若,则”的否命题是“若,则”B.“若,则”的逆命题为真命题C.,使成立D.“若,则”是真命题8.已知某超市2018年12个月的收入与支出数据的折线图如图所示:根据该折线图可知,下列说法错误的是()A.该超市2018年的12个月中的7月份的收益最高B.该超市2018年的12个月中的4月份的收益最低C.该超市2018年1-6月份的总收益低于2018年7-12月份的总收益D.该超市2018年7-12月份的总收益比2018年1-6月份的总收益增长了90万元9.“哥德巴赫猜想”是近代三大数学难题之一,其内容是:一个大于2的偶数都可以写成两个质数(素数)之和,也就是我们所谓的“1+1”问题.它是1742年由数学家哥德巴赫提出的,我国数学家潘承洞、王元、陈景润等在哥德巴赫猜想的证明中做出相当好的成绩.若将6拆成两个正整数的和,则拆成的和式中,加数全部为质数的概率为()A. B. C. D.10.若,则()A. B. C. D.11.中国古代中的“礼、乐、射、御、书、数”合称“六艺”.“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,指数学.某校国学社团开展“六艺”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“数”必须排在第三节,且“射”和“御”两门课程相邻排课,则“六艺”课程讲座不同的排课顺序共有()A.12种 B.24种 C.36种 D.48种12.大衍数列,米源于我国古代文献《乾坤谱》中对易传“大衍之数五十”的推论,主要用于解释我国传统文化中的太极衍生原理,数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和.已知该数列前10项是0,2,4,8,12,18,24,32,40,50,…,则大衍数列中奇数项的通项公式为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.点是曲线()图象上的一个定点,过点的切线方程为,则实数k的值为______.14.已知函数有且只有一个零点,则实数的取值范围为__________.15.已知F为抛物线C:x2=8y的焦点,P为C上一点,M(﹣4,3),则△PMF周长的最小值是_____.16.函数的定义域是.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,为直线上动点,过点作抛物线:的两条切线,,切点分别为,,为的中点.(1)证明:轴;(2)直线是否恒过定点?若是,求出这个定点的坐标;若不是,请说明理由.18.(12分)已知直线l的极坐标方程为,圆C的参数方程为(为参数).(1)请分别把直线l和圆C的方程化为直角坐标方程;(2)求直线l被圆截得的弦长.19.(12分)如图1,四边形为直角梯形,,,,,,为线段上一点,满足,为的中点,现将梯形沿折叠(如图2),使平面平面.(1)求证:平面平面;(2)能否在线段上找到一点(端点除外)使得直线与平面所成角的正弦值为?若存在,试确定点的位置;若不存在,请说明理由.20.(12分)在平面直角坐标系xOy中,曲线l的参数方程为(为参数),以原点O为极点,x轴非负半轴为极轴建立极坐标系,曲线C的极坐标方程为4sin.(1)求曲线C的普通方程;(2)求曲线l和曲线C的公共点的极坐标.21.(12分)在中,内角的对边分别是,满足条件.(1)求角;(2)若边上的高为,求的长.22.(10分)已知函数(1)求函数的单调递增区间(2)记函数的图象为曲线,设点是曲线上不同两点,如果在曲线上存在点,使得①;②曲线在点M处的切线平行于直线AB,则称函数存在“中值和谐切线”,当时,函数是否存在“中值和谐切线”请说明理由
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】
首先根据复数代数形式的除法运算求出,求出的模即可.【详解】解:,,故选:A本题考查了复数求模问题,考查复数的除法运算,属于基础题.2.B【解析】
由等差数列的性质和已知可得,即可得到,代入由诱导公式计算可得.【详解】解:由等差数列的性质可得,解得,,故选:B.本题考查等差数列的下标和公式的应用,涉及三角函数求值,属于基础题.3.B【解析】
根据角终边上的点坐标,求得,代入二倍角公式即可求得的值.【详解】因为终边上有一点,所以,故选:B此题考查二倍角公式,熟练记忆公式即可解决,属于简单题目.4.D【解析】
求解的导函数,研究其单调性,对任意不相等的正数,构造新函数,讨论其单调性即可求解.【详解】的定义域为,,当时,,故在单调递减;不妨设,而,知在单调递减,从而对任意、,恒有,即,,,令,则,原不等式等价于在单调递减,即,从而,因为,所以实数a的取值范围是故选:D.此题考查含参函数研究单调性问题,根据参数范围化简后构造新函数转换为含参恒成立问题,属于一般性题目.5.A【解析】
根据2018年的家庭总收人为元,且就医费用占得到就医费用,再根据年的就医费用比年的就医费用增加了元,得到年的就医费用,然后由年的就医费用占总收人,得到2019年的家庭总收人再根据储畜费用占总收人求解.【详解】因为2018年的家庭总收人为元,且就医费用占所以就医费用因为年的就医费用比年的就医费用增加了元,所以年的就医费用元,而年的就医费用占总收人所以2019年的家庭总收人为而储畜费用占总收人所以储畜费用:故选:A本题主要考查统计中的折线图和条形图的应用,还考查了建模解模的能力,属于基础题.6.C【解析】
依题意可得,且是的一条对称轴,即可求出的值,再根据三角函数的平移规则计算可得;【详解】解:由已知得,是的一条对称轴,且使取得最值,则,,,,故选:C.本题考查三角函数的性质以及三角函数的变换规则,属于基础题.7.D【解析】选项A,否命题为“若,则”,故A不正确.选项B,逆命题为“若,则”,为假命题,故B不正确.选项C,由题意知对,都有,故C不正确.选项D,命题的逆否命题“若,则”为真命题,故“若,则”是真命题,所以D正确.选D.8.D【解析】
用收入减去支出,求得每月收益,然后对选项逐一分析,由此判断出说法错误的选项.【详解】用收入减去支出,求得每月收益(万元),如下表所示:月份123456789101112收益203020103030604030305030所以月收益最高,A选项说法正确;月收益最低,B选项说法正确;月总收益万元,月总收益万元,所以前个月收益低于后六个月收益,C选项说法正确,后个月收益比前个月收益增长万元,所以D选项说法错误.故选D.本小题主要考查图表分析,考查收益的计算方法,属于基础题.9.A【解析】
列出所有可以表示成和为6的正整数式子,找到加数全部为质数的只有,利用古典概型求解即可.【详解】6拆成两个正整数的和含有的基本事件有:(1,5),(2,4),(3,3),(4,2),(5,1),而加数全为质数的有(3,3),根据古典概型知,所求概率为.故选:A.本题主要考查了古典概型,基本事件,属于容易题.10.D【解析】
直接利用二倍角余弦公式与弦化切即可得到结果.【详解】∵,∴,故选D本题考查的知识要点:三角函数关系式的恒等变变换,同角三角函数关系式的应用,主要考查学生的运算能力和转化能力,属于基础题型.11.C【解析】
根据“数”排在第三节,则“射”和“御”两门课程相邻有3类排法,再考虑两者的顺序,有种,剩余的3门全排列,即可求解.【详解】由题意,“数”排在第三节,则“射”和“御”两门课程相邻时,可排在第1节和第2节或第4节和第5节或第5节和第6节,有3种,再考虑两者的顺序,有种,剩余的3门全排列,安排在剩下的3个位置,有种,所以“六艺”课程讲座不同的排课顺序共有种不同的排法.故选:C.本题主要考查了排列、组合的应用,其中解答中认真审题,根据题设条件,先排列有限制条件的元素是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.12.B【解析】
直接代入检验,排除其中三个即可.【详解】由题意,排除D,,排除A,C.同时B也满足,,,故选:B.本题考查由数列的项选择通项公式,解题时可代入检验,利用排除法求解.二、填空题:本题共4小题,每小题5分,共20分。13.1【解析】
求出导函数,由切线斜率为4即导数为4求出切点横坐标,再由切线方程得纵坐标后可求得.【详解】设,由题意,∴,,,即,∴,.故答案为:1.本题考查导数的几何意义,函数图象某点处的切线的斜率就是该点处导数值.本题属于基础题.14.【解析】
当时,转化条件得有唯一实数根,令,通过求导得到的单调性后数形结合即可得解.【详解】当时,,故不是函数的零点;当时,即,令,,,当时,;当时,,的单调减区间为,增区间为,又,可作出的草图,如图:则要使有唯一实数根,则.故答案为:.本题考查了导数的应用,考查了转化化归思想和数形结合思想,属于难题.15.5【解析】
△PMF的周长最小,即求最小,过做抛物线准线的垂线,垂足为,转化为求最小,数形结合即可求解.【详解】如图,F为抛物线C:x2=8y的焦点,P为C上一点,M(﹣4,3),抛物线C:x2=8y的焦点为F(0,2),准线方程为y=﹣2.过作准线的垂线,垂足为,则有,当且仅当三点共线时,等号成立,所以△PMF的周长最小值为55.故答案为:5.本题考查抛物线定义的应用,考查数形结合与数学转化思想方法,属于中档题.16.【解析】解:因为,故定义域为三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)见解析(2)直线过定点.【解析】
(1)设出两点的坐标,利用导数求得切线的方程,设出点坐标并代入切线的方程,同理将点坐标代入切线的方程,利用韦达定理求得线段中点的横坐标,由此判断出轴.(2)求得点的纵坐标,由此求得点坐标,求得直线的斜率,由此求得直线的方程,化简后可得直线过定点.【详解】(1)设切点,,,∴切线的斜率为,切线:,设,则有,化简得,同理可的.∴,是方程的两根,∴,,,∴轴.(2)∵,∴.∵,∴直线:,即,∴直线过定点.本小题主要考查直线和抛物线的位置关系,考查直线过定点问题,考查化归与转化的数学思想方法,属于中档题.18.(1).x2+y2=1.(2)16【解析】
(1)直接利用极坐标方程和参数方程公式化简得到答案.(2)圆心到直线的距离为,故弦长为得到答案.【详解】(1),即,即,即.,故.(2)圆心到直线的距离为,故弦长为.本题考查了极坐标方程和参数方程,圆的弦长,意在考查学生的计算能力和转化能力.19.(1)证明见解析;(2)存在点是线段的中点,使得直线与平面所成角的正弦值为.【解析】
(1)在直角梯形中,根据,,得为等边三角形,再由余弦定理求得,满足,得到,再根据平面平面,利用面面垂直的性质定理证明.(2)建立空间直角坐标系:假设在上存在一点使直线与平面所成角的正弦值为,且,,求得平面的一个法向量,再利用线面角公式求解.【详解】(1)证明:在直角梯形中,,,因此为等边三角形,从而,又,由余弦定理得:,∴,即,且折叠后与位置关系不变,又∵平面平面,且平面平面.∴平面,∵平面,∴平面平面.(2)∵为等边三角形,为的中点,∴,又∵平面平面,且平面平面,∴平面,取的中点,连结,则,从而,以为坐标原点建立如图所示的空间直角坐标系:则,,则,假设在上存在一点使直线与平面所成角的正弦值为,且,,∵,∴,故,∴,又,该平面的法向量为,,令得,∴,解得或(舍),综上可知,存在点是线段的中点,使得直线与平面所成角的正弦值为.本题主要考查面面垂直的性质定理和向量法研究线面角问题,还考查了转化化归的思想和运算求解的能力,属于中档题.20.(1)(2)(2,).【解析】
(1)利用极坐标和直角坐标的转化公式求解.(2)先把两个方程均化为普通方程,求解公共点的直角坐标,然后化为极坐标即可.【详解】(1)∵曲线C
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 药厂安全知识培训课件
- 商业销售分销协议
- 药品配送技巧培训课件
- 智能硬件产品测试报告表
- 文言文文学魅力欣赏教学计划
- IT技术支持响应流程表快速问题解决
- 印刷购销协议集合
- 工程合同模板工具包
- 糖尿病个案护理演讲
- 贫血护理课程讲解
- 2025云南昆明巫家坝建设发展有限责任公司及下属公司第三季度招聘23人笔试模拟试题及答案解析
- 2025年机动车检验检测机构授权签字人考核试题及答案
- 2025年少儿英语教师职业资格考试试卷:英语教学互动式学习
- 2024年护理综合管理能力考试试题(附答案)
- 培训师必要知识课件
- 2025年事业单位卫生类专业知识试卷(卫生监督与卫生法规)试题
- 新学期-启航出发-2025-2026学年初一上学期新生开学第一课主题班会
- 2025年部编版新教材语文八年级上册全册教案设计(含教学计划)
- 人教版新教材小学二年级《数学》上册新教材解读课件
- DSA术前术后护理要点
- 2025年秋数学(新)人教版三年级上课件:第1课时 观察物体
评论
0/150
提交评论