版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省宜春市丰城九中2025-2026学年数学高三第一学期期末学业水平测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.做抛掷一枚骰子的试验,当出现1点或2点时,就说这次试验成功,假设骰子是质地均匀的.则在3次这样的试验中成功次数X的期望为()A.13 B.12.已知双曲线(a>0,b>0)的右焦点为F,若过点F且倾斜角为60°的直线l与双曲线的右支有且只有一个交点,则此双曲线的离心率e的取值范围是()A. B.(1,2), C. D.3.已知,则的值等于()A. B. C. D.4.如图在直角坐标系中,过原点作曲线的切线,切点为,过点分别作、轴的垂线,垂足分别为、,在矩形中随机选取一点,则它在阴影部分的概率为()A. B. C. D.5.函数在上的图象大致为()A. B. C. D.6.已知是双曲线的左右焦点,过的直线与双曲线的两支分别交于两点(A在右支,B在左支)若为等边三角形,则双曲线的离心率为()A. B. C. D.7.已知点P不在直线l、m上,则“过点P可以作无数个平面,使得直线l、m都与这些平面平行”是“直线l、m互相平行”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件8.如图,这是某校高三年级甲、乙两班在上学期的5次数学测试的班级平均分的茎叶图,则下列说法不正确的是()A.甲班的数学成绩平均分的平均水平高于乙班B.甲班的数学成绩的平均分比乙班稳定C.甲班的数学成绩平均分的中位数高于乙班D.甲、乙两班这5次数学测试的总平均分是1039.若执行如图所示的程序框图,则输出的值是()A. B. C. D.410.设函数的定义域为,命题:,的否定是()A., B.,C., D.,11.一小商贩准备用元钱在一批发市场购买甲、乙两种小商品,甲每件进价元,乙每件进价元,甲商品每卖出去件可赚元,乙商品每卖出去件可赚元.该商贩若想获取最大收益,则购买甲、乙两种商品的件数应分别为()A.甲件,乙件 B.甲件,乙件 C.甲件,乙件 D.甲件,乙件12.已知抛物线上的点到其焦点的距离比点到轴的距离大,则抛物线的标准方程为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设为正实数,若则的取值范围是__________.14.已知f(x)为偶函数,当x≤0时,f(x)=e-x-1-x,则曲线y=f(x)15.设为定义在上的偶函数,当时,(为常数),若,则实数的值为______.16.如图,直三棱柱中,,,,P是的中点,则三棱锥的体积为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)等比数列中,.(Ⅰ)求的通项公式;(Ⅱ)记为的前项和.若,求.18.(12分)如图,已知抛物线:与圆:()相交于,,,四个点,(1)求的取值范围;(2)设四边形的面积为,当最大时,求直线与直线的交点的坐标.19.(12分)设函数f(x)=|x﹣a|+|x|(a>0).(1)若不等式f(x)﹣|x|≥4x的解集为{x|x≤1},求实数a的值;(2)证明:f(x).20.(12分)第十四届全国冬季运动会召开期间,某校举行了“冰上运动知识竞赛”,为了解本次竞赛成绩情况,从中随机抽取部分学生的成绩(得分均为整数,满分100分)进行统计,请根据频率分布表中所提供的数据,解答下列问题:(1)求、、的值及随机抽取一考生其成绩不低于70分的概率;(2)若从成绩较好的3、4、5组中按分层抽样的方法抽取5人参加“普及冰雪知识”志愿活动,并指定2名负责人,求从第4组抽取的学生中至少有一名是负责人的概率.组号分组频数频率第1组150.15第2组350.35第3组b0.20第4组20第5组100.1合计1.0021.(12分)在中国,不仅是购物,而且从共享单车到医院挂号再到公共缴费,日常生活中几乎全部领域都支持手机支付.出门不带现金的人数正在迅速增加。中国人民大学和法国调查公司益普索合作,调查了腾讯服务的6000名用户,从中随机抽取了60名,统计他们出门随身携带现金(单位:元)如茎叶图如示,规定:随身携带的现金在100元以下(不含100元)的为“手机支付族”,其他为“非手机支付族”.(1)根据上述样本数据,将列联表补充完整,并判断有多大的把握认为“手机支付族”与“性别”有关?(2)用样本估计总体,若从腾讯服务的用户中随机抽取3位女性用户,这3位用户中“手机支付族”的人数为,求随机变量的期望和方差;(3)某商场为了推广手机支付,特推出两种优惠方案,方案一:手机支付消费每满1000元可直减100元;方案二:手机支付消费每满1000元可抽奖2次,每次中奖的概率同为,且每次抽奖互不影响,中奖一次打9折,中奖两次打8.5折.如果你打算用手机支付购买某样价值1200元的商品,请从实际付款金额的数学期望的角度分析,选择哪种优惠方案更划算?附:0.0500.0100.0013.8416.63510.82822.(10分)已知函数.(1)当(为自然对数的底数)时,求函数的极值;(2)为的导函数,当,时,求证:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】
每一次成功的概率为p=26=【详解】每一次成功的概率为p=26=13故选:C.本题考查了二项分布求数学期望,意在考查学生的计算能力和应用能力.2.A【解析】
若过点且倾斜角为的直线与双曲线的右支有且只有一个交点,则该直线的斜率的绝对值小于等于渐近线的斜率.根据这个结论可以求出双曲线离心率的取值范围.【详解】已知双曲线的右焦点为,若过点且倾斜角为的直线与双曲线的右支有且只有一个交点,则该直线的斜率的绝对值小于等于渐近线的斜率,,离心率,,故选:.本题考查双曲线的性质及其应用,解题时要注意挖掘隐含条件.3.A【解析】
由余弦公式的二倍角可得,,再由诱导公式有,所以【详解】∵∴由余弦公式的二倍角展开式有又∵∴故选:A本题考查了学生对二倍角公式的应用,要求学生熟练掌握三角函数中的诱导公式,属于简单题4.A【解析】
设所求切线的方程为,联立,消去得出关于的方程,可得出,求出的值,进而求得切点的坐标,利用定积分求出阴影部分区域的面积,然后利用几何概型概率公式可求得所求事件的概率.【详解】设所求切线的方程为,则,联立,消去得①,由,解得,方程①为,解得,则点,所以,阴影部分区域的面积为,矩形的面积为,因此,所求概率为.故选:A.本题考查定积分的计算以及几何概型,同时也涉及了二次函数的切线方程的求解,考查计算能力,属于中等题.5.C【解析】
根据函数的奇偶性及函数在时的符号,即可求解.【详解】由可知函数为奇函数.所以函数图象关于原点对称,排除选项A,B;当时,,,排除选项D,故选:C.本题主要考查了函数的奇偶性的判定及奇偶函数图像的对称性,属于中档题.6.D【解析】
根据双曲线的定义可得的边长为,然后在中应用余弦定理得的等式,从而求得离心率.【详解】由题意,,又,∴,∴,在中,即,∴.故选:D.本题考查求双曲线的离心率,解题关键是应用双曲线的定义把到两焦点距离用表示,然后用余弦定理建立关系式.7.C【解析】
根据直线和平面平行的性质,结合充分条件和必要条件的定义进行判断即可.【详解】点不在直线、上,若直线、互相平行,则过点可以作无数个平面,使得直线、都与这些平面平行,即必要性成立,若过点可以作无数个平面,使得直线、都与这些平面平行,则直线、互相平行成立,反证法证明如下:若直线、互相不平行,则,异面或相交,则过点只能作一个平面同时和两条直线平行,则与条件矛盾,即充分性成立则“过点可以作无数个平面,使得直线、都与这些平面平行”是“直线、互相平行”的充要条件,故选:.本题主要考查充分条件和必要条件的判断,结合空间直线和平面平行的性质是解决本题的关键.8.D【解析】
计算两班的平均值,中位数,方差得到正确,两班人数不知道,所以两班的总平均分无法计算,错误,得到答案.【详解】由题意可得甲班的平均分是104,中位数是103,方差是26.4;乙班的平均分是102,中位数是101,方差是37.6,则A,B,C正确.因为甲、乙两班的人数不知道,所以两班的总平均分无法计算,故D错误.故选:.本题考查了茎叶图,平均值,中位数,方差,意在考查学生的计算能力和应用能力.9.D【解析】
模拟程序运行,观察变量值的变化,得出的变化以4为周期出现,由此可得结论.【详解】;如此循环下去,当时,,此时不满足,循环结束,输出的值是4.故选:D.本题考查程序框图,考查循环结构.解题时模拟程序运行,观察变量值的变化,确定程序功能,可得结论.10.D【解析】
根据命题的否定的定义,全称命题的否定是特称命题求解.【详解】因为:,是全称命题,所以其否定是特称命题,即,.故选:D本题主要考查命题的否定,还考查了理解辨析的能力,属于基础题.11.D【解析】
由题意列出约束条件和目标函数,数形结合即可解决.【详解】设购买甲、乙两种商品的件数应分别,利润为元,由题意,画出可行域如图所示,显然当经过时,最大.故选:D.本题考查线性目标函数的线性规划问题,解决此类问题要注意判断,是否是整数,是否是非负数,并准确的画出可行域,本题是一道基础题.12.B【解析】
由抛物线的定义转化,列出方程求出p,即可得到抛物线方程.【详解】由抛物线y2=2px(p>0)上的点M到其焦点F的距离比点M到y轴的距离大,根据抛物线的定义可得,,所以抛物线的标准方程为:y2=2x.故选B.本题考查了抛物线的简单性质的应用,抛物线方程的求法,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
根据,可得,进而,有,而,令,得到,再用导数法求解,【详解】因为,所以,所以,所以,所以,令,,所以,当时,,当时,所以当时,取得最大值,又,所以取值范围是,故答案为:本题主要考查基本不等式的应用和导数法求最值,还考查了运算求解的能力,属于难题,14.y=2x【解析】试题分析:当x>0时,-x<0,则f(-x)=ex-1+x.又因为f(x)为偶函数,所以f(x)=f(-x)=ex-1+x,所以f'【考点】函数的奇偶性、解析式及导数的几何意义【知识拓展】本题题型可归纳为“已知当x>0时,函数y=f(x),则当x<0时,求函数的解析式”.有如下结论:若函数f(x)为偶函数,则当x<0时,函数的解析式为y=-f(x);若f(x)为奇函数,则函数的解析式为y=-f(-x).15.1【解析】
根据为定义在上的偶函数,得,再根据当时,(为常数)求解.【详解】因为为定义在上的偶函数,所以,又因为当时,,所以,所以实数的值为1.故答案为:1本题主要考查函数奇偶性的应用,还考查了运算求解的能力,属于基础题.16.【解析】
证明平面,于是,利用三棱锥的体积公式即可求解.【详解】平面,平面,,又.平面,是的中点,.
故答案为:本题考查了线面垂直的判定定理、三棱锥的体积公式,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(Ⅰ)或(Ⅱ)12【解析】
(1)先设数列的公比为,根据题中条件求出公比,即可得出通项公式;(2)根据(1)的结果,由等比数列的求和公式,即可求出结果.【详解】(1)设数列的公比为,,,或.(2)时,,解得;时,,无正整数解;综上所述.本题主要考查等比数列,熟记等比数列的通项公式与求和公式即可,属于基础题型.18.(1)(2)点的坐标为【解析】
将抛物线方程与圆方程联立,消去得到关于的一元二次方程,抛物线与圆有四个交点需满足关于的一元二次方程在上有两个不等的实数根,根据二次函数的有关性质即可得到关于的不等式组,解不等式即可.不妨设抛物线与圆的四个交点坐标为,,,,据此可表示出直线、的方程,联立方程即可表示出点坐标,再根据等腰梯形的面积公式可得四边形的面积的表达式,令,由及知,对关于的面积函数进行求导,判断其单调性和最值,即可求出四边形的面积取得最大值时的值,进而求出点坐标.【详解】(1)联立抛物线与圆的方程消去,得.由题意可知在上有两个不等的实数根.所以解得,所以的取值范围为.(2)根据(1)可设方程的两个根分别为,(),则,,,,且,,所以直线、的方程分别为,,联立方程可得,点的坐标为,因为四边形为等腰梯形,所以,令,则,所以,因为,所以当时,;当时,,所以函数在上单调递增,在上单调递减,即当时,四边形的面积取得最大值,因为,点的坐标为,所以当四边形的面积取得最大值时,点的坐标为.本题考查利用导数求函数的极值与最值、抛物线及其标准方程及直线与圆锥曲线相关的最值问题;考查运算求解能力、转化与化归能力和知识的综合运用能力;利用函数的思想求圆锥曲线中面积的最值是求解本题的关键;属于综合型强、难度大型试题.19.(1)a=1;(2)见解析【解析】
(1)由题意可得|x﹣a|≥4x,分类讨论去掉绝对值,分别求得x的范围即可求出a的值.(2)由条件利用绝对值三角不等式,基本不等式证得f(x)≥2..【详解】(1)由f(x)﹣|x|≥4x,可得|x﹣a|≥4x,(a>0),当x≥a时,x﹣a≥4x,解得x,这与x≥a>0矛盾,故不成立,当x<a时,a﹣x≥4x,解得x,又不等式的解集是{x|x≤1},故1,解得a=1.(2)证明:f(x)=|x﹣a|+|x||x﹣a﹣(x)|=|a|,∵a>0,∴|a|=a22,当且仅当a时取等号,故f(x).本题主要考查绝对值三角不等式,基本不等式,绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于基础题.20.(1),,,;(2)【解析】
(1)根据第1组的频数和频率求出,根据频数、频率、的关系分别求出,进而求出不低于70分的概率;(2)由(1)得,根据分层抽样原则,分别从抽出2人,2人,1人,并按照所在组对抽出的5人编号,列出所有2名负责人的抽取方法,得出第4组抽取的学生中至少有一名是负责人的抽法数,由古典概型概率公式,即可求解.【详解】(1),,,由频率分布表可得成绩不低于70分的概率约为:(2)因为第3、4、5组共有50名学生,所以利用分层抽样在50名学生中抽取5名学生,每组分别为:第3组:人,第4组:人,第5组:人,所以第3、4、5组分别抽取2人,2人,1人设第3组的3位同学为、,第4组的2位同学为、,第5组的1位同学为,则从五位同学中抽两位同学有10种可能抽法如下:,,,,,,,,,,其中第4组的2位同学、至少有一位同学是负责人有7种抽法,故所求的概率为.本题考查补全频率分布表、古典概型的概率,属于基础题.21
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 业务拓展经理业务拓展经理培训讲义
- 2024年广东深圳实验学校招聘教师考试真题
- QA检验员新员工入职培训手册
- ESG专员团队建设方案
- 裁剪服装制版师岗前内部控制考核试卷含答案
- HR工作计划与人力资源管理方案
- 2026-2031中国风机盘管市场深度研究与市场运营趋势报告
- 专业餐饮行业文秘技能与素养培养方案
- 2026-2031中国光纤通信市场深度调查及投资方向研究报告
- 2026-2031中国领带领结行业发展前景预测及投资战略研究报告
- 2025衢州市市级机关事业单位第三期编外招聘39人笔试考试参考试题及答案解析
- 2025全国医疗应急能力培训系列课程参考答案
- 保安服务项目投标方案(技术标)
- 中日钓鱼岛问题
- GB/T 15843.4-2024信息技术安全技术实体鉴别第4部分:采用密码校验函数的机制
- OLP-网管系统用户手册(武汉光迅)
- 敦煌的艺术智慧树知到答案章节测试2023年
- 病人心理与心理护理课件
- 传输专业常用仪表
- 自然地理学-第五章-地貌精课件
- 楚航无人船水域测量机器人系统介绍课件
评论
0/150
提交评论